首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   9篇
物理学   2篇
  2019年   1篇
  2018年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2007年   1篇
  2003年   3篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
A three-dimensional Sn–Ag thin film with open interconnected walls consisting of active small grains of Sn and Ag was fabricated by electro-less reduction method as anode for lithium-ion batteries application. The morphologies and electrochemical performance of the macroporous Sn–Ag thin films were investigated by using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, cyclic voltammetry, and galvanostatical charge–discharge measurement. The results demonstrated that through controlling the plating time, the electrode with optimized microstructure exhibited the largest reversible capacities, maintaining a capacity of 583 mAh g?1 after 100 cycles, due to the well-preserved micro-porous structure after extended cycling.  相似文献   
2.
In the last decades, a broad family of hydrides have attracted attention as prospective hydrogen storage materials of very high gravimetric and volumetric capacity, fast H2-sorption kinetics, environmental friendliness and economical affordability. However, constraints due to their high activation energies of the different H2-sorption steps and the Gibbs energy of their reaction with H2 has led to the need of high thermal energy to drive H2 uptake and release. High heat leads to significant degradation effects (recrystallization, phase segregation, nanoparticles agglomeration…) of the hydrides. In this context, this short review aims to summarize alternative non-thermal methods and non-straightforward thermally driven methods to overcome the previous constraints. The phenomenology lying behind these methods, i. e. tribological activation, sonication, and electromagnetic radiation, and the effect of these processes on hydrogen sorption properties of hydrides are described. These non-usual approaches could boost the capability of the next generation of solid-hydride materials for hydrogen conversion in energy sector, in mobile devices and as hydrogen reservoirs.  相似文献   
3.
The solid-state reaction between LiNH2 and LiH potentially offers an effective route for hydrogen storage if it can be tailored to meet all the requirements for practical applications. To date, there still exists large uncertainty on the mechanism of the reaction--whether it is mediated by a transient NH3 or directly between LiNH2 and LiH. In an effort to clarify this issue and improve the reactivity, the effects of selected nitrides were investigated here by temperature-programmed desorption, X-ray diffraction, in-situ infrared analysis, and hydrogen titration. The results show that the reaction of LiNH2 with LiH below 300 degrees C is a heterogeneous solid-state reaction controlled by Li+ diffusion from LiH to LiNH2 across the interface. At the LiNH2/LiH interface, an ammonium ion Li2NH2+ and a penta-coordinated nitrogen Li2NH3 could be the intermediate states leading to the production of hydrogen and the formation of lithium imide. In addition, it is identified that BN is an efficient "catalyst" that improves Li+ diffusion and hence the kinetics of the reaction between LiNH2 and LiH. Hydrogen is fully released within 7 h at 200 degrees C with BN addition, rather than several days without the modification.  相似文献   
4.
A significant improvement in the dehydrogenation kinetics of the (LiNH(2) + LiH) system was obtained upon doping with elemental Si. Whilst, complete dehydrogenation of the (LiNH(2) + LiH) system requires more than 2 h, the time required for full dehydrogenation was reduced to less than 30 min by doping with elemental Si. It is observed that Si thermodynamically destabilises the system through the formation of novel intermediate phases resulting from the reaction of Si with both LiNH(2) and LiH. Such intermediate phases are also believed to enhance reaction kinetics by providing a path for accelerated dehydrogenation and the rapid release of hydrogen at the early stages of the reaction. It is believed that the dehydrogenation kinetics of the (LiNH(2) + LiH) system, which is controlled by the diffusion of H(-) from LiH and H(+) from LiNH(2), becomes independent of diffusion upon Si addition due to an enhanced concentration gradient in reactive ionic species.  相似文献   
5.
This work reports a novel and reproducible route for the successful modification of the surface of titanium (Ti) with self-assembled monolayers (SAMs). By electropolishing the surface of Ti, suitable physical/chemical surface properties were obtained for adequate growth of OctadecylTrichloroSilane (OTS) based SAM. Optimum conditions to achieve a well-organized and densely packed OTS film were also determined by monitoring the effect of different parameters including time, concentration, and temperature for OTS adsorption. The optimum conditions for the formation of an OTS-SAM were found to be upon immersion of the electropolished Ti substrate in a 10mM OTS solution at 10°C for 24h. Furthermore, multiple growth regimes for the formation of OTS-SAM on electropolished Ti surface were observed. The kinetics for the self-assembly were fast at the beginning of OTS adsorption, but rapidly slowed down after 10h of immersion, i.e. during the densification process of the film at the surface of Ti. In addition, the growth behavior was found to be random as opposed to the island growth behavior usually observed with OTS at the surface of silica. The successful implementation of OTS-SAM was further investigated through the immobilization and delivery of a model drug and the OTS monolayer showed clear abilities in drug delivery with an initial burst release up to 5days followed by a sustained release up to 26days.  相似文献   
6.
The nanosilicon connected by polypyrrole (PPy) and silver (Ag) particles was simply synthesized by a chemical polymerization process in order to prepare Si-based anodes for Li-ion batteries. The phase structure, surface morphology, and electrochemical properties of the as-synthesized powders were analyzed by X-ray diffraction, FT-IR, scanning electron microscopy, and galvanostatic charge/discharge measurements. The cycle stability of the Si-PPy-Ag composites was greatly enhanced compared with the pure nanosilicon. A high capacity of more than 823 mA h g?1 was maintained after 100 cycles. The improved electrochemical characteristics are attributed to the volume buffering effect as well as effective electronic conductivity of the polypyrrole and silver in the composite electrode.  相似文献   
7.
Sulfite dehydrogenase from Starkeya novella is an alphabeta heterodimer comprising a 40.6 kDa subunit (containing the Mo cofactor) and a smaller 8.8 kDa heme c subunit. The enzyme catalyses the oxidation of sulfite to sulfate with the natural electron acceptor being cytochrome c550. Its catalytic mechanism is thought to resemble that found in eukaryotic sulfite oxidases. Using protein film voltammetry and redox potentiometry, we have identified both Mo- and heme-centered redox responses from the enzyme immobilized on a pyrolytic graphite working electrode: E m,8 (Fe III/II) +177 mV; E m,8 (Mo VI/V) +211 mV and E m,8 (Mo V/IV) -118 mV vs NHE; Upon addition of sulfite to the electrochemical cell a steady-state voltammogram is observed and an apparent Michaelis constant (Km) of 26(1) microM was determined for the enzyme immobilized on the working electrode surface, which is comparable with the value obtained from solution assays.  相似文献   
8.
Electrochemistry of bacterial cytochrome P450cin (CYP176A) reveals that, unusually, substrate binding does not affect the heme redox potential, although a marked pH dependence is consistent with a coupled single electron/single proton transfer reaction in the range 6 < pH < 10.  相似文献   
9.
Through the synthesis of 2D MFI zeolite samples of Si/Al ratio ranged from 13 to 74 with inter-crystalline mesoporosity and their reference 3D counterparts, we have systematically studied and revealed the impact of Si/Al ratio on the inter-dependence of core intrinsic properties of structural porosity and acidity. It is apparent that mesopores in the 2D MFI zeolite play a critical role, dictating the accessibility and distribution of specific acid sites. It was found that, compared to their 3D counterparts, the 2D samples possess a three-times larger accessible surface area owing to the mesopores. Although having a slightly lower total number of acid sites, the 2D samples enjoy a higher percentage of accessible strong acid sites and weak Lewis acid sites. Consequently, in three selected liquid phase reactions, which had different acidity demands and molecular diffusion constraints, the 2D samples demonstrated much higher catalytic activities and resistance to deactivation. This study has, for the first time, established the relationship between Si/Al ratio and acidity for the 2D MFI zeolite, thus enabling rational selection of a Si/Al ratio for a targeted application.  相似文献   
10.
Protein film voltammetry of Rhodobacter capsulatus xanthine dehydrogenase   总被引:1,自引:0,他引:1  
Xanthine dehydrogenase (XDH) from the bacterium Rhodobacter capsulatus catalyzes the hydroxylation of xanthine to uric acid with NAD(+) as the electron acceptor. R. capsulatus XDH forms an (alphabeta)(2) heterotetramer and is highly homologous to homodimeric eukaryotic XDHs. The crystal structures of bovine XDH and R. capsulatus XDH showed that the two proteins have highly similar folds; however, R.capsulatus XDH is at least 5 times more active than bovine XDH and, unlike mammalian XDH, does not undergo the conversion to the oxidase form. Here we demonstrate electrocatalytic activity of the recombinant enzyme, expressed in Escherichia coli, while immobilized on an edge plane pyrolytic graphite working electrode. Furthermore, we have determined all redox potentials of the four cofactors (Mo(VI/V), Mo(V/IV), FAD/FADH, FADH/FADH(2) and two distinct [2Fe-2S](2+/+) clusters) using a combination of potentiometric and voltammetric methods. A novel feature identified in catalytic voltammetry of XDH concerns the potential for the onset of catalysis (ca. 400 mV), which is at least 600 mV more positive than that of the highest potential cofactor. This unusual observation is explained on the basis of a pterin-associated oxidative switch during voltammetry that precedes catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号