首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
物理学   10篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1989年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Induced optical losses and paramagnetic Ge(n) centers were investigated in germanium-doped silica glass and optical fibers after γ and ultraviolet (UV) irradiation. It was found that both types of irradiation created similar effects. By means of selective UV irradiation, Ge (1 and 3) centers were identified in optical absorption spectra, presumably as induced bands centered at 4.4 eV and 6.2 eV, respectively. Moreover, photobleaching of Ge(1) centers took place under 266-nm wavelength excitation. In optical fibers no difference was observed between γ- and UV-induced loss spectra in the wavelength range from 480 nm to 1,900 nm. Partial reversibility of the photocoloration was observed. For comparison, the coloration effects were studied in glass prepared by means of modified chemical vapor deposition (MCVD) vapor-phase axial deposition (VAD), and plasma-activated chemical vapor deposition (PCVD) techniques.  相似文献   
2.
Germania-glass-core silica-glass-cladding single-mode fibers (deltan as great as 0.143) with a minimum loss of 20 dB/km at 1.85 microm were fabricated by modified chemical-vapor deposition. The fibers exhibit strong photorefractivity, with type IIa index modulation of 2 x 10(-3). A Raman gain of 300 dB/(kmW) was determined at 1.12 microm. Only 3 m of such fibers is sufficient for constructing the 10-W Raman laser at 1.12 microm with a 13-W pump at 1.07 microm.  相似文献   
3.
The experimental results for the propagation of high-power pulses in fibers with length-varying chromatic dispersion are presented.  相似文献   
4.
Bismuth-doped fiber lasers operating in the range 1300-1470 nm have been demonstrated for the first time, to our knowledge. It has been shown that Bi-doped alumina-free phosphogermanosilicate fibers reveal optical gain in a wavelength range of 1240-1485 nm with pumping at 1205, 1230, or 808 nm.  相似文献   
5.
A 24 dB gain bismuth-doped fiber amplifier at 1430 nm pumped by a 65 mW commercial laser diode at 1310 nm is reported for the first time (to our knowledge). A 3 dB bandwidth of about 40 nm, a noise figure of 6 dB, and a power conversion efficiency of about 60% are demonstrated. The temperature behavior of the gain spectrum is examined.  相似文献   
6.
Optical fibers with bismuth-doped silicate and germanate glass cores were fabricated by the modified chemical vapor deposition technique (solution and vapor-phase Bi incorporation). The fibers revealed an efficient luminescence with a maximum in the 1050-1200 nm spectral range, FWHM up to 200 nm, and a lifetime of the order of 1 ms.  相似文献   
7.
An original architecture of an active fiber allowing a nearly diffraction-limited beam to be produced is demonstrated. The active medium is a double-clad large-mode-area photonic-bandgap fiber consisting of a 10,000 ppm by weight Yb(3+)-doped core surrounded by an alternation of high- and low-index layers constituting a cylindrical photonic crystal. The periodic cladding allows the robust propagation of a approximately 200 microm(2) fundamental mode and efficiently discriminates against the high-order modes. The M(2) parameter was measured to be 1.17. A high-power cw laser was built exhibiting 80% slope efficiency above threshold. The robust propagation allows the fiber to be tightly bent. Weak incidence on the slope efficiency was observed with wounding radii as small as 6 cm.  相似文献   
8.
Four-wave mixing (FWM) in nonlinear germanosilicate fibers with GeO2 concentrations as high as 67 mol.% in the core is studied theoretically and experimentally. Large frequency shifts of 1875-3829 cm(-1) are observed in the mixed-mode pump parametric process. The dependence of FWM phase matching on the GeO2 concentration, core diameter, and index profile is demonstrated. The 2.5% conversion efficiency of an 887 nm signal to a 1.3 microm communication band is obtained at a 2 W cw pump power inside the fiber.  相似文献   
9.
The optical properties of optical fibers based on silica glass doped with bismuth and co-doped with aluminum oxides and/or germanium, phosphorus, and titanium oxides are studied. The optical loss and luminescence spectra of optical fibers substantially depend on the core composition. The gain spectra of single-mode optical fibers are measured in the IR range. It is demonstrated that the phosphorus-germanium-silicate optical fiber doped with bismuth exhibits a broad gain band (1270–1520 nm) when pumped at a wavelength of 1230 nm. It is also shown that the bismuth-aluminosilicate optical fibers additionally doped with Ge or Ti at about 1 at % have the gain spectra that are significantly narrower than the IR luminescence spectra (in contrast to the fibers that do not contain Ge and Ti). The intensity decay curves of the IR luminescence in such fibers indicate the presence of both short-lived (with the lifetime τ≤4 μs) and long-lived (τ ~ 1 ms) energy levels in the bismuth active centers.  相似文献   
10.
An efficient CW bismuth fiber laser operating around 1.46 μm with an efficiency of >50% and an output power of >20 W has been developed on a bismuth-doped GeO(2)-SiO(2) fiber. The laser demonstrates weak dependence of the output power on temperature in comparison with bismuth lasers operating near 1.15 and 1.3 μm. The laser generation has been obtained in the range 1.39 to 1.54 μm. The first linearly polarized bismuth-doped fiber laser at 1.46 μm based on a PANDA-type fiber has been demonstrated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号