首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1201篇
  免费   50篇
  国内免费   4篇
化学   976篇
晶体学   18篇
力学   7篇
数学   76篇
物理学   178篇
  2023年   12篇
  2022年   9篇
  2021年   16篇
  2020年   17篇
  2019年   26篇
  2018年   25篇
  2017年   7篇
  2016年   26篇
  2015年   19篇
  2014年   49篇
  2013年   54篇
  2012年   65篇
  2011年   90篇
  2010年   58篇
  2009年   50篇
  2008年   83篇
  2007年   71篇
  2006年   87篇
  2005年   65篇
  2004年   49篇
  2003年   74篇
  2002年   63篇
  2001年   28篇
  2000年   12篇
  1999年   9篇
  1998年   11篇
  1997年   7篇
  1996年   3篇
  1995年   6篇
  1994年   6篇
  1993年   4篇
  1992年   8篇
  1991年   10篇
  1990年   6篇
  1989年   9篇
  1988年   7篇
  1987年   8篇
  1986年   4篇
  1985年   8篇
  1984年   4篇
  1983年   10篇
  1982年   4篇
  1981年   11篇
  1980年   8篇
  1979年   14篇
  1978年   7篇
  1977年   10篇
  1976年   4篇
  1975年   7篇
  1961年   3篇
排序方式: 共有1255条查询结果,搜索用时 31 毫秒
1.
Development of supramolecular methods to further activate a highly reactive intermediate is a fascinating strategy to create novel potent catalysts for activation of inert chemicals. Herein, a supramolecular approach to enhance the oxidizing ability of a high-valent oxo species of a nitrido-bridged iron porphyrinoid dimer that is a known potent molecular catalyst for light alkane oxidation is reported. For this purpose, a nitrido-bridged dinuclear iron complex of porphyrin-phthalocyanine heterodimer 3 5+, which is connected through a fourfold rotaxane, was prepared. Heterodimer 3 5+ catalyzed ethane oxidation in the presence of H2O2 at a relatively low temperature. The site-selective complexation of 3 5+ with an additional anionic porphyrin (TPPS4−) through π–π stacking and electrostatic interactions afforded a stable 1:1 complex. It was demonstrated that the supramolecular post-synthetic modification of 3 5+ enhances its catalytic activity efficiently. Moreover, supramolecular conjugates achieved higher catalytic ethane oxidation activity than nitrido-bridged iron phthalocyanine dimer, which is the most potent iron-oxo-based molecular catalyst for light-alkane oxidation reported so far. Electrochemical measurements proved that the electronic perturbation from TPPS4− to 3 5+ enhanced the catalytic activity.  相似文献   
2.
Seven new monogalactosyl diacylglycerols (1-7) and six new digalactosyl diacylglycerols (11-16) were isolated from an axenically cultured cyanobacterium, P. tenue. Their structures were elucidated on the basis of physicochemical evidence and the results of enzymatic hydrolysis using a lipase (from Rhizopus arrhizus). Comparison of antialgal activity for P. tenue between monogalactosyl diacylglycerols (1-8) and digalactosyl diacylglycerols (11-19) revealed that the former showed more potent activity than the latter.  相似文献   
3.
4.
A liquid‐crystalline epoxy resin was cured at two different temperatures. The phases of the cured systems clearly showed isotropic and nematic polydomain structures, which depended on the curing temperature. The fracture toughness of the systems was measured, and the fracture mechanism was investigated with polarized IR measurements. The nematic polydomain structure system showed considerably higher fracture toughness than the isotropic structure. Moreover, both systems exhibited a reorientation of the network chains near the fracture surface during the fracture process, and the region of the network reorientation in the nematic polydomain structure system was larger than that in the isotropic structure system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4044–4052, 2004  相似文献   
5.
Interface properties of BCN/GaN metal-insulator-semiconductor (MIS) structures are investigated by X-ray photoelectron spectroscopy (XPS) and capacitance versus voltage (C-V) characteristics measurements. The BCN/GaN samples are fabricated by in situ process consisting of plasma treatment and deposition of BCN film in the plasma-assisted chemical vapor deposition (PACVD) apparatus. XPS measurement shows that the oxide formation at the BCN/GaN interface is suppressed by nitrogen (N2) and hydrogen (H2) plasma treatment. The interface state density is estimated from C-V characteristics measured at 1 MHz using Terman method. The minimum interface state density appears from 0.2 to 0.7 eV below the conduction band edge of GaN. The minimum value of the interface state density is estimated to be 3.0 × 1010 eV−1 cm−2 for the BCN/GaN structure with mixed N2 and H2 plasma treatment for 25 min. Even after annealing at 430 °C for 10 min, the interface state density as low as 6.0 × 1010 eV−1 cm−2 is maintained.  相似文献   
6.
The rate coefficient for the reaction of CCl3 radicals with ozone has been measured at 303 ± 2 K. The CCl3 radicals were generated by the pulsed laser photolysis of carbon tetrachloride at 193 nm. The time profile of CCl3 concentration was monitored with a photoionization mass spectrometer. Addition of the O3–O2 mixture to this system caused a decay of the CCl3 concentration because of the reactions of CCl3 + O3 → products (5) and CCl3 + O2 → products (4). The decay of signals from the CCl3 radical was measured in the presence and absence of ozone. In the absence of ozone, the O3–O2 mixture was passed through a heated quartz tube to convert the ozone to molecular oxygen. Since the rate coefficient for the reaction of CCl3 + O2 could be determined separately, the absolute rate coefficient for reaction ( 5 ) was obtained from the competition among these reactions. The rate coefficient determined for reaction ( 5 ) was (8.6 ± 0.5) × 10?13 cm3 molecule?1 s?1 and was also found to be independent of the total pressure (253–880 Pa of N2). This result shows that the reaction of CCl3 with O3 cannot compete with its reaction with O2 in the ozone layer. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 310–316, 2003  相似文献   
7.
Recently, we have developed a new tight-binding quantum chemical molecular dynamics program “Colors” for combinatorial computational chemistry approach. This methodology is based on our original tight-binding approximation and realized over 5000 times acceleration compared to the conventional first-principles molecular dynamics method. In the present study, we applied our new program to the simulations on various realistic large-scale models of the automotive three-way catalysts, ultrafine Pt particle/CeO2(111) support. Significant electron transfer from the Pt particle to the CeO2(111) surface was observed and it was found to strongly depend on the size of the Pt particle. Furthermore, our simulation results suggest that the reduction of the Ce atom due to the electron transfer from the Pt particle to the CeO2 surface is a main reason for the strong interaction of the Pt particle and CeO2(111) support.  相似文献   
8.
The effect of spin relaxation on tunnel magnetoresistance (TMR) in a ferromagnet/superconductor/ferromagnet (FM/SC/FM) double tunnel junction is theoretically studied. The spin accumulation in SC is determined by balancing of the spin-injection rate and the spin-relaxation rate. In the superconducting state, the spin-relaxation time τs becomes longer with decreasing temperature, resulting in a rapid increase of TMR. The TMR of FM/SC/FM junctions provides a useful probe to extract information about spin-relaxation in superconductors.  相似文献   
9.
A small-angle X-ray scattering (SAXS) study was performed to reveal the nanometer scale hybrid structure of Si---Ti---C---O fibers prepared by the pyrolysis of polytitanocarbosilane. The SAXS profile for Si---Ti---C---O fibers is attributed to two different types of scattering entities: an anisotropic contribution from long filaments with diameters hundreds to thousands of Ångströms and an isotropic contribution from β-SiC fine clusters of about a nanometer in diameter. A drastic degradation in the tensile strength of the fibers is correlated to the characteristic variations in their long-and medium-range structure.  相似文献   
10.
A detailed study of the in-plane magnetotransport properties of spin valves with one and two Fe3O4 electrodes is presented. Fe3O4/Au/Fe3O4 spin valves exhibit a clear anisotropic magnetoresistance in small magnetic fields but no giant magnetoresistance (GMR). The absence of GMR in these structures is due to simultaneous magnetization reversal in the two Fe3O4 layers. By contrast, a negative GMR effect is measured on Fe3O4/Au/Fe spin valves. The negative GMR is attributed to an electron spin scattering asymmetry at the Fe3O4/Au interface or an induced spin scattering asymmetry in the Au interfacial layers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号