首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   1篇
化学   35篇
力学   5篇
数学   1篇
物理学   44篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   4篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1996年   4篇
  1995年   3篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
  1976年   1篇
  1967年   1篇
排序方式: 共有85条查询结果,搜索用时 0 毫秒
1.
2.
After listening to a sound that is presented repeatedly, subjects report hearing different transforms of the original sound. The frequency of reported transforms is a sensitive index of some speech disorders as well as cognitive flexibility in aging. In this paper, we propose and investigate quantitative measures that characterize the dynamics of this phenomenon, known as the verbal transformation effect. In particular, we show that the distribution of the dwell time, the time spent perceiving a string of a given phonemic form before switching to another form, obeys a power law for normal subjects with an exponent valued between 1 and 2. This result suggests that within this paradigm there is no characteristic time scale for the perceptual process. Additionally, we analyze the correlation properties of the transforms. We suggest that the complexity measures and techniques introduced here might be useful diagnostic tools for a number of speech and cognitive disorders. (c) 1995 American Institute of Physics.  相似文献   
3.
The process by which DNA repair enzymes recognize and selectively excise damaged bases in duplex DNA is fundamental to our mechanistic understanding of these critical biological reactions. 8-Oxoguanine (8-oxoG) is the most common form of oxidative DNA damage; unrepaired, this lesion generates a G:C-->T:A mutation. Central to the recognition and repair of DNA damage is base extrusion, a process in which the damaged base lesion or, in some cases, its partner disengages from the helix and is bound to the enzyme's active site where base excision takes place. The conformation adopted by 8-oxoG in duplex DNA is affected by the base positioned opposite this lesion; conformational changes may also take place when the damaged base binds to its cognate repair enzyme. We performed unrestrained molecular dynamics simulations for several 13-mer DNA duplexes. Oligomers containing G:C and 8oxoG:C pairs adopted Watson-Crick geometries in stable B-form duplexes; 8oxoG showed increased local and global flexibility and a reduced barrier to base extrusion. Duplexes containing the G:A mismatch showed much larger structural fluctuations and failed to adopt a well-defined structure. For the 8oxoG:A mismatch that is recognized by the DNA glycosylase MutY, the damaged nucleoside underwent spontaneous and reproducible anti-->syn transitions. The syn conformation is thermodynamically preferred. Steric hindrance and unfavorable electrostatics associated with the 8oxoG O8 atom in the anti conformation were the major driving forces for this transition. Transition events follow two qualitatively different pathways. The overall anti-->syn transition rate and relative probability of the two transition paths were dependent on local sequence context. These simulations indicate that both the dynamic and equilibrium behavior of the duplex change as a result of oxidation; these differences may provide valuable new insight into the selective action of enzymes on damaged DNA.  相似文献   
4.
5.
An experimental study of the thermal decomposition of a β‐hydroxy alkene, 3‐methyl‐3‐buten‐1‐ol, in m‐xylene solution, has been carried out at five different temperatures in the range of 513.15–563.15 K. The temperature dependence of the rate constants for the decomposition of this compound in the corresponding Arrhenius equation is given by ln k (s?1) = (25.65 ± 1.52) ? (17,944 ± 814) (kJ·mol?1T?1. A computational study has been carried out at the M05–2X/6–31+G(d,p) level of theory to calculate the rate constants and the activation parameters by the classical transition state theory. There is a good agreement between the experimental and calculated rate constants and activation Gibbs energies. The bonding characteristics of reactant, transition state, and products have been investigated by the natural bond orbital analysis, which provides the natural atomic charges and the Wiberg bond indices. Based on the results obtained, the mechanism proposed is a one‐step process proceeding through a six‐membered cyclic transition state, being a concerted and slightly asynchronous process. The results have been compared with those obtained previously by us (Struct Chem 2013, 24, 1811–1816) for the thermal decomposition of 3‐buten‐1‐ol, in m‐xylene solution. We can conclude that in the compound studied in this work, 3‐methyl‐3‐buten‐1‐ol, the effect of substitution at position 3 by a weakly activating CH3 group is the stabilization of the transition state formed in the reaction and therefore a small increase in the rate of thermal decomposition.  相似文献   
6.
Abstract

Due to the wide use of polymers in medicine, researchers are required to solve a very important problem–to understand the interaction between materials of nonphysiological origin and the surrounding biological liquids, and tissues, particularly blood.  相似文献   
7.
In this paper we theoretically analyze two mechanisms which could account for the experimentally observed increase in pair density for the strain-confined electron-hole liquid (EHL) in Ge. We find that the change in drop density with uniform stress is insufficient to explain the experimental result. However, we find that the strain gradient in the well acts to compress the liquid sufficiently to explain the observed density increases. Densities of twice the equilibrium value can be easily obtained for large enough drop size, but the density should vary by < 10% if the drop radius is < 100 μm.  相似文献   
8.
9.
The current study provides a way of extraction for both active NSO and WSE from Nigella sativa seeds using 98% methanol. About 1?kg of ground seeds was macerated by 1:2.5 w/v (g/mL) for 72?hours. After rotary evaporation and 7 days of continuous drying and chilling at 50 and 4?°C, NSO and WSE were obtained at the same instant. Solubility tests of 24 solvents and 11 thin layer chromatographic analyses while 2, 2-diphenyl-1-picrylhydrazyl free radical scavenging assay of NSO (73.66) , WSE (33.32) and NSO?+?WSE (78.22) against ascorbic acid (IC50?=?4.28?mg/mL) was performed. WSE was found to be highly soluble in water and 5% NaOH exhibiting the same Rf value of 0.95 for EtOH:DMSO (9:1) against the honey. WSE has revealed more than twofold higher anti-oxidant activity than others. Formulation of WSE with Tualang honey may provide better targeted hydrophilic drug delivery systems.  相似文献   
10.
The reaction of the pentapeptide Ac-His1-Ala2-Ala3-Ala4-His5-NH2 (AcHAAAHNH2) (1) with [Pd(en)(ONO2)2] (en = NH2CH2CH2NH2) in either DMF-d(7) or H2O:D2O (90%:10%) gave three linkage isomers of [Pd(en)(AcHAAAHNH2)](2+) (2), 2a, 2b, and 2c, which differ only in which pair of imidazole nitrogen atoms bind to Pd. In the most abundant isomer, 2a, Pd is bound by N1 from each of the two imidazole rings. In the minor isomers 2b and 2c, Pd is bound by N1(His1) and N3(His5) and by N3(His1) and N1(His5), respectively. The reactions of [Pd(en)(ONO2)2] with the N-methylated peptides Ac-(N3-MeHis)-Ala-Ala-Ala-(N3-MeHis)-NH2 (AcH*AAAH*NH2) (3), Ac-(N3-MeHis)-Ala-Ala-Ala-(N1-MeHis)-NH2 (AcH(*)AAAH(#)NH2) (4), and Ac-(N1-MeHis)-Ala-Ala-Ala-(N3-Me-His)-NH2 (AcH(#)AAAH(*)NH2) (5) each gave a single species [Pd(en)(peptide)](2+) in N,N-dimethylformamide (DMF) or aqueous solution, 7, 8, and 9, respectively, with Pd bound by the two nonmethylated imidazole nitrogen atoms in each case. These complexes were analogous to 2a, 2b, and 2c, respectively. Ac-(N1-MeHis)-Ala-Ala-Ala-(N1-MeHis)-NH2 (AcH(#)AAAH(#)NH2) (6) with [Pd(en)(ONO2)2] in DMF slowly gave a single product, [Pd(en)(AcH(#)AAAH(#)NH2)](2+) (10), in which Pd was bound by the N3 of each imidazole ring. The corresponding linkage isomer of 2 was not observed. Complex 10 was also the major product in aqueous solution, but other species were also present. All compounds were exhaustively characterized in solution by multinuclear 1D ((1)H , (13)C, and, with (15)N-labeled ethylenediamine, (15)N) and 2D (correlation spectroscopy, total correlation spectroscopy, transverse rotating-frame Overhauser effect spectroscopy (T-ROESY), heteronuclear multiple-bond correlation, and heteronuclear single quantum coherence) NMR spectra, circular dichroism (CD) spectra, electrospray mass spectroscopy, and reversed-phase high-performance liquid chromatography. ROESY spectra were used to calculate the structure of 2a, which contained a single turn of a peptide alpha helix in both DMF and water, the helix being better defined in DMF. The Pd(en)(2+) moiety was not used in structure calculations, but its location and coordination by one imidazole N1 from each histidine to form a 22-membered metallocycle were unambiguously established. Convergence of the structures was greatest when calculated with two hydrogen-bond constraints (Ala4 peptide NH...OC acetyl and His5 peptide NH...OC-His1) that were indicated by the low temperature dependence of these NH chemical shifts. Vicinal HN-CHalpha coupling constants and chemical shifts of alpha-H atoms were also consistent with a helical conformation. Similar long-range ROE correlations were observed for [Pd(en)(AcH(*)AAAH(*)NH2)](2+) (7), which displayed a CD spectrum in aqueous solution that suggested the presence of some helicity. Long-range ROE correlations were not observed for 8, 9, or 10, but a combination of NMR data and CD spectroscopy was interpreted in terms of the conformational behavior of the coordinated pentapeptide. Only for the linkage isomer [Pd(en)(AcH(*)AAAH(#)NH2)](2+) (8) was there evidence of a contribution from a helical conformation. The data for 8 were interpreted as interconversion between the helix and random coil conformations. Zn(2+) with peptides gave broad NMR peaks attributed to lability of this metal ion, while reactions of cis-[Pt(NH3)2(ONO2)2] were slow, giving a complex mixture of products rather than the macrochelate ring observed with Pd(en)(2+). In summary, these studies indicate that Pd(en)(2+) coordinates to histidine with similar preference for each of the two imidazole nitrogens, enabling the formation of up to four linkage isomers in its complexes with pentapeptides His-xxx-His. Only the N1-N1 linkage isomer that forms a 22-membered macrochelate ring is able to induce an alpha-helical peptide conformation, whereas the 20- and 21-membered rings of linkage isomers do not. This suggests that linkage isomeric mixtures may compromise histidine coordination to metal ions and reduce alpha-helicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号