首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  国内免费   2篇
数学   4篇
物理学   16篇
  2013年   1篇
  2007年   1篇
  2005年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
排序方式: 共有20条查询结果,搜索用时 125 毫秒
1.
2.
It is well known that the ability to fibrillate is intrinsic to a normal ventricle that exceeds a critical mass. The questions we address are how is ventricular fibrillation (VF) initiated and perpetuated in normal myocardium, and why is VF not seen more often in the general population if all ventricles have the ability to fibrillate. To study the mechanisms of VF, we used computerized mapping techniques with up to 512 channels of simultaneous multisite recordings for data acquisition. The data were then processed for dynamic display of the activation patterns and for mathematical analyses of the activation intervals. The results show that in normal ventricles, VF can be initiated by a single strong premature stimulus given during the vulnerable period of the cardiac cycle. The initial activations form a figure-eight pattern. Afterward, VF will perpetuate itself without any outside help. The self-perpetuation itself is due to at least two factors. One is that single wave fronts spontaneously break up into two or more wavelets. The second is that when two wavelets intersect perpendicular to each other, the second wavelet is broken by the residual refractoriness left over from the first wavelet. Mathematical analyses of the patterns of activation during VF revealed that VF is a form of chaos, and that transition from ventricular tachycardia (VT) to VF occurs via the quasiperiodic route. In separate experiments, we found that we can convert VF to VT by tissue size reduction. The physiological mechanism associated with the latter transition appears to be the reduction of the number of reentrant wave fronts and wandering wavelets. Based on these findings, we propose that the reentrant wave fronts and the wandering wavelets serve as the physiological equivalent of coupled oscillators. A minimal number of oscillators is needed for VF to perpetuate itself, and to generate chaotic dynamics; hence a critical mass is required to perpetuate VF. We conclude that VF in normal myocardium is a form of reentrant cardiac arrhythmia. A strong electrical stimulus initiates single or dual reentrant wave fronts that break up into multiple wavelets. Sometimes short-lived reentry is also generated during the course of VF. These organized reentrant and broken wavelets serve as coupled oscillators that perpetuate VF and maintain chaos. Although the ability to support these oscillators exists in a normal ventricle, the triggers required to generate them are nonexistent in the normal heart. Therefore, VF and sudden death do not happen to most people with normal ventricular myocardium. (c) 1998 American Institute of Physics.  相似文献   
3.
In many generic combustion models, one finds that a combustionwave will develop with a specific wave speed. However, thereare possible initial temperature profiles which do not evolveinto such waves, but rather die out to the ambient temperature.There can exist, in some models, a clear distinction betweenthose initial conditions that do evolve into combustion wavesand those that do not; this is sometimes referred to as thewatershed initial condition. When fuel consumption is consideredto be negligible, analytical methods can be used to obtain theexact watershed. In this paper, we consider the problem of determiningpseudo-watersheds and ascertaining the relationship betweenthese pseudo-watersheds and the exact watersheds. In the processa novel weight-function approach for infinite spatial domainsis developed.  相似文献   
4.
5.
6.
7.
8.
In support of the spiral wave theory of reentry, simulation studies and animal models have been utilized to show various patterns of spiral wave tip motion such as meandering and drifting. However, the demonstration of these or any other patterns in cardiac tissues have been limited. Whether such patterns of spiral tip motion are commonly observed in fibrillating cardiac tissues is unknown, and whether such patterns form the basis of ventricular tachycardia or fibrillation remain debatable. Using a computerized dynamic activation display, 108 episodes of atrial and ventricular tachycardia and fibrillation in isolated and intact canine cardiac tissues, as well as in vitro swine and myopathic human cardiac tissues, were analyzed for patterns of nonstationary, spiral wave tip motion. Among them, 46 episodes were from normal animal myocardium without pharmacological perturbations, 50 samples were from normal animal myocardium, either treated with drugs or had chemical ablation of the subendocardium, and 12 samples were from diseased human hearts. Among the total episodes, 11 of them had obvious nonstationary spiral tip motion with a life span of >2 cycles and with consecutive reentrant paths distinct from each other. Four patterns were observed: (1) meandering with an inward petal flower in 2; (2) meandering with outward petals in 5; (3) irregularly concentric in 3 (core moving about a common center); and (4) drift in 1 (linear core movement). The life span of a single nonstationary spiral wave lasted no more than 7 complete cycles with a mean of 4.6+/-4.3, and a median of 4.5 cycles in our samples. Conclusion: (1) Patently evident nonstationary spiral waves with long life spans were uncommon in our sample of mostly normal cardiac tissues, thus making a single meandering spiral wave an unlikely major mechanism of fibrillation in normal ventricular myocardium. (2) A tendency toward four patterns of nonstationary spiral tip motion was observed. (c) 1998 American Institute of Physics.  相似文献   
9.
Total and differential cross sections for the reactions p + d3He + m 0 with m=π, η and p + d3H+π+ were measured with the GEM detector at COSY for beam momenta between threshold and the maximum of the corresponding baryon resonance. For both reactions a strong forward-backward asymmetry was found. The data were compared with model calculations. The aspect of isospin symmetry breaking is studied. Representing the GEM Collaboration  相似文献   
10.
With the development of high intensity femtosecond lasers, the ionisation and dissociation dynamics of molecules has become an area of considerable interest. Using the technique of femtosecond laser mass spectrometry (FLMS), the molecules carbon disulphide, pyrimidine, toluene, cyclohexanone and benzaldehyde are studied with pulse widths of 50 fs in the near infrared (IR) wavelength region (790 nm). Results are presented and contrasted for laser beam intensities around 10(15) and 10(16) W cm(-2). For the lower intensities, the mass spectra yield dominant singly charged parent ions. Additionally, the appearance of doubly charged parent ions is evident for carbon disulphide, toluene and benzaldehyde with envelopes of doubly charged satellite species existing in these local regions. Carbon disulphide also reveals a small triply charged component. Such atomic-like features are thought to be a strong fingerprint of FLMS at these intensities. However, upon increasing the laser intensity to approximately 10(16) W cm(-2), parent ion dominance decreases and the appearance of multiply charged atomic species occurs, particularly carbon. This phenomenon has been attributed to Coulomb explosions in which the fast absorption of many photons may produce transient highly ionised parent species which can subsequently blow apart. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号