首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
化学   6篇
数学   1篇
物理学   33篇
  2019年   1篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   3篇
  1999年   2篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1988年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
2.
We describe and interpret computer simulations of the time evolution of a binary alloy on a cubic lattice, with nearest neighbor interactions favoring like pairs of atoms. Initially the atoms are arranged at random; the time evolution proceeds by random interchanges of nearest neighbor pairs, using probabilities compatible with the equilibrium Gibbs distribution at temperatureT. For temperatures 0.59Tc, 0.81 Tc, and 0.89T c, with density of A atoms equal to that in the B-rich phase at coexistence, the density C1 of clusters ofl A atoms approximately satisfies the following empirical formulas: C1 w(1 –)3 andC 1, (1 –)4Q1w1 (2 l 10). Herew is a parameter and we defineQ l = K e E(K) , where the sum goes over all translationally nonequivalentl-particle clusters andE(K) is the energy of formation of the clusterK. Forl > 10,Q 1 is not known exactly; so we use an extrapolation formulaQ l Aw s –l l exp(–bl ), wherew s is the value ofw at coexistence. The same formula (withw > w s) also fits the observed values of C, (for small values ofl) at densities greater than the coexistence density (forT=0.59Tc): When the supersaturation is small, the simulations show apparently metastable states, a theoretical estimate of whose lifetime is compatible with the observations. For higher supersaturation the system is observed to undergo a slow process of segregation into two coexisting phases (andw therefore changes slowly with time). These results may be interpreted as a more quantitative formulation (and confirmation) of ideas used in standard nucleation theory. No evidence for a spinodal transition is found.Supported by AFOSR Grant No. 73-2430D and by ERDA Contract No. EY-76-C-02-3077*000.  相似文献   
3.
The results of computer simulations of phase separation kinetics in a binary alloy quenched from a high temperature are analyzed in detail, using the ideas of Lifshitz and Slyozov. The alloy was modeled by a three-dimensional Ising model with Kawasaki dynamics. The temperature after quenching was 0.59T c, whereT c is the critical temperature, and the concentration of minority atoms was=0.075, which is about five times their largest possible single-phase equilibrium concentration at that temperature. The time interval covered by our analysis goes from about 1000 to 6000 attempted interchanges per site. The size distribution of small clusters of minority atoms is fitted approximately byc 1(1-)3 w(t),c 1 (1–)4 Q l w(t)l(2l10); wherec l is the concentration of clusters of sizel;Q 2,...,Q 10 are known constants, the cluster partition functions;t is the time; andw(t)=0.015(1+7.17t –1/3). The distribution of large clusters (l20) is fitted approximately by the type of distribution proposed by Lifshitz and Slyozov,c l ,(t)=–(d/dl) [lnt+p (l/t)], where is a function given by those authors and is defined by(x)=C o ex-C 1 e –4x/3-C 2 e –5x/3;C 0,C 1,C 2 are constants determined by considering how the total number of particles in large clusters changes with time.Supported by the U.S. Air Force Office of Scientific Research under Grant No. 78-3522 and by the U.S. Department of Energy under Contract No. EY-76-C-02-3077*000.  相似文献   
4.
We develop an asynchronous event-driven First-Passage Kinetic Monte Carlo (FPKMC) algorithm for continuous time and space systems involving multiple diffusing and reacting species of spherical particles in two and three dimensions. The FPKMC algorithm presented here is based on the method introduced in Oppelstrup et al. [10] and is implemented in a robust and flexible framework. Unlike standard KMC algorithms such as the n-fold algorithm, FPKMC is most efficient at low densities where it replaces the many small hops needed for reactants to find each other with large first-passage hops sampled from exact time-dependent Green’s functions, without sacrificing accuracy. We describe in detail the key components of the algorithm, including the event-loop and the sampling of first-passage probability distributions, and demonstrate the accuracy of the new method. We apply the FPKMC algorithm to the challenging problem of simulation of long-term irradiation of metals, relevant to the performance and aging of nuclear materials in current and future nuclear power plants. The problem of radiation damage spans many decades of time-scales, from picosecond spikes caused by primary cascades, to years of slow damage annealing and microstructure evolution. Our implementation of the FPKMC algorithm has been able to simulate the irradiation of a metal sample for durations that are orders of magnitude longer than any previous simulations using the standard Object KMC or more recent asynchronous algorithms.  相似文献   
5.
This study examines the difficulties college students experience when creating and interpreting graphs in which speed is one of the variables. Nineteen students, all preservice elementary or middle school teachers, completed an upper‐level course exploring algebraic concepts. Although all of these preservice teachers had previously completed several mathematics courses, including calculus, they demonstrated widespread misconceptions about the variable speed. This study identifies four cognitive obstacles held by the students, provides excerpts of their graphical constructions and verbal interpretations, and discusses potential causes for the confusion. In particular, misconceptions arose when students interpreted the behavior and nature of speed within a graphical context, as well as in situations where they were required to construct a graph involving speed as a variable. The study concludes by offering implications for the teaching and learning of speed and its interpretation within a graphical setting.  相似文献   
6.
The Green's function Monte Carlo method is generalized to treat quantum systems at non-zero temperature. The algorithm that is developed absolutely requires importance sampling to make it feasible. The nature of the importance sampling transformation needed for an efficient algorithm is discussed in theory and practice. As a demonstration of the principles, we carry out a calculation of the two body contribution to the radial distribution function and the second virial coefficient of a hard sphere fluid. Accurate numerical results are obtained. It is also shown how improvement in the structure of the importance function can lead to dramatic improvements in computational efficiency. A method is described, and successfully applied, whereby an importance function may be determined in large part during the Monte Carlo, rather than a priori. Finally, we conjecture that importance sampling can also be applied to the sums over permutations for treating boson or fermion systems.  相似文献   
7.
We present a novel Monte Carlo algorithm for N diffusing finite particles that react on collisions. Using the theory of first-passage processes and time dependent Green's functions, we break the difficult N-body problem into independent single- and two-body propagations circumventing numerous diffusion hops used in standard Monte Carlo simulations. The new algorithm is exact, extremely efficient, and applicable to many important physical situations in arbitrary integer dimensions.  相似文献   
8.
A novel parallel kinetic Monte Carlo (kMC) algorithm formulated on the basis of perfect time synchronicity is presented. The algorithm is intended as a generalization of the standard n-fold kMC method, and is trivially implemented in parallel architectures. In its present form, the algorithm is not rigorous in the sense that boundary conflicts are ignored. We demonstrate, however, that, in their absence, or if they were correctly accounted for, our algorithm solves the same master equation as the serial method. We test the validity and parallel performance of the method by solving several pure diffusion problems (i.e. with no particle interactions) with known analytical solution. We also study diffusion-reaction systems with known asymptotic behavior and find that, for large systems with interaction radii smaller than the typical diffusion length, boundary conflicts are negligible and do not affect the global kinetic evolution, which is seen to agree with the expected analytical behavior. Our method is a controlled approximation in the sense that the error incurred by ignoring boundary conflicts can be quantified intrinsically, during the course of a simulation, and decreased arbitrarily (controlled) by modifying a few problem-dependent simulation parameters.  相似文献   
9.
Fast atom bombardment, combined with high-energy collision-induced tandem mass spectrometry, has been used to investigate gas-phase metal-ion interactions with captopril, enalaprilat and lisinopril, all angiotensin-converting enzyme inhibitors.Suggestions for the location of metal-binding sites are presented. For captopril, metal binding occurs most likely at both the sulphur and the nitrogen atom. For enalaprilat and lisinopril, binding preferably occurs at the amine nitrogen. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号