首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   2篇
物理学   1篇
  2014年   1篇
  2012年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.

The noise power spectrum (NPS) is one of the most general methods for measuring the noise amplitude and the quality of an image acquired from a uniform radiation field. The purpose of this study was to compare different NPS methodologies by using megavoltage X-ray energies. The NPS evaluation methods in diagnostic radiation were applied to therapy using the International Electrotechnical Commission standard (IEC 62220-1). In order to measure the region of interest (ROI) of the NPS, we used the following five factors: the overlapping impact, the non-overlapping impact, the penumbra, the flatness and different ROI sizes. We used NPS from four different types of detectors, the CR-IP (computed radiography image plate: photo-stimulable phosphor screen), the CR-IP-lead (hexalon lead screen), the CR-IP-back [lanex TM fast back screen: {terbium-doped gadolinium oxysulfide granular phosphor screen (Gd2O2S:Tb,133 mg/cm2)} + 1-mm-thick copper plate and the CR-IP-front (lanex TM fast front screen). A Kodak 2000 RT photo-stimulable phosphor-based computed radiographic (CR) system showed that the normalized noise power spectrum (NNPS) curve gradually decreased, in compliance with increasing spatial resolution. In addition, each detector showed a different reactivity of the NPS to megavoltage. The results of multivariate analysis of variance (MANOVA) test (methods × detectors) revealed significant main effects of the methods [F(1, 4) = 53.543, P = 0.001 and of the detectors [F(1, 4) = 17.556, P = 0.001]. The present study revealed that various factors could be employed to produce megavoltage imaging (MVI) of the NPS and as a baseline standard for NPS control in MVI.

  相似文献   
2.
Pendant drop experimental results are presented for the temperature dependence of the interfacial tension between water and the immiscible nematic liquid crystal 4'-pentyl-4-biphenylcarbonitrile (5CB) in the presence of the adsorbed surfactant cetyltrimethylammonium bromide (CTAB). Adsorption of the surfactant lowers the interfacial tension value and is also known from earlier work to induce a transition in liquid crystal surface alignment from planar to homeotropic [Brake et al. Langmuir 2003, 19, 6436.]. Discrepancies exist in the literature regarding the density of 5CB, and the density difference between 5CB and water in any case is very small. However, from the ability to form pendant 5CB drops, one may infer that the density of 5CB exceeds that of water over the entire temperature range studied (28-41 degrees C), in disagreement with the predictions of one earlier report on 5CB. The interfacial tension is shown to exhibit a relative maximum near the bulk 5CB nematic-isotropic transition temperature T(NI), regardless of which published data set of 5CB density values is used to analyze the measurements, with a possible discontinuity in tension occurring at T(NI). The anomalous shape of the interfacial tension curve, depending on the choice of the 5CB density data set, may be quite similar to that recently reported for the interface between 5CB and a hydrophobic, isotropic molten polymer (Rai et al. Langmuir 2003, 19, 7370).  相似文献   
3.
In this work, we present the feasibility of using a parallel RF transmit with multiple RF sources imaging method (MultiTransmit imaging) in polymer gel dosimetry. Image quality and B1 field homogeneity was statistically better in the MultiTransmit imaging method than in conventional single source RF transmission imaging method. In particular, the standard uncertainty of R 2 was lower on the MultiTransmit images than on the conventional images. Furthermore, the MultiTransmit measurement showed improved dose resolution. Improved image quality and B1 homogeneity results in reduced dose uncertainty, thereby suggesting the feasibility of MultiTransmit MR imaging in gel dosimetry.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号