首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12237篇
  免费   396篇
  国内免费   94篇
化学   8314篇
晶体学   108篇
力学   302篇
综合类   1篇
数学   1960篇
物理学   2042篇
  2023年   88篇
  2022年   131篇
  2021年   208篇
  2020年   235篇
  2019年   275篇
  2018年   191篇
  2017年   194篇
  2016年   441篇
  2015年   335篇
  2014年   373篇
  2013年   721篇
  2012年   688篇
  2011年   764篇
  2010年   513篇
  2009年   464篇
  2008年   692篇
  2007年   725篇
  2006年   583篇
  2005年   639篇
  2004年   521篇
  2003年   405篇
  2002年   386篇
  2001年   188篇
  2000年   168篇
  1999年   111篇
  1998年   115篇
  1997年   126篇
  1996年   142篇
  1995年   110篇
  1994年   101篇
  1993年   111篇
  1992年   93篇
  1991年   83篇
  1990年   86篇
  1989年   72篇
  1988年   61篇
  1987年   67篇
  1986年   82篇
  1985年   118篇
  1984年   134篇
  1983年   109篇
  1982年   88篇
  1981年   89篇
  1980年   79篇
  1979年   78篇
  1978年   88篇
  1977年   61篇
  1976年   57篇
  1975年   63篇
  1974年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The unsaturated dimer of methyl acrylate [CH2C(CO2CH3)CH2CH2CO2CH3, or MAD] was copolymerized with various monomers to prepare copolymers bearing the ω-unsaturated end group [CH2C(CO2CH3)CH2 ] arising from β fragmentation of the MAD propagating radical. Copolymerizations of MAD with cyclohexyl and n-butyl acrylate resulted in copolymers with ω-unsaturated end groups, and increasing the temperature up to 180 °C resulted in an increase in the rate of β fragmentation of MAD radicals relative to propagation. Only a small amount of unsaturated end groups was introduced by copolymerization with ethyl methacrylate (EMA), and the EMA content in the copolymer increased with temperature. These findings could be explained by the reversible addition of the poly(EMA) radical to MAD. The copolymerization with ethyl α-ethyl acrylate (EEA) did yield a copolymer containing unsaturated end groups with MAD units as part of the main chain, although the steric hindrance of the ethyl group suppressed homopropagation and crosspropagation of EEA, resulting in low polymerization rates. Therefore, the copolymerization of MAD with acrylic esters at high temperatures was noted as a convenient route for obtaining acrylate–MAD copolymers bearing unsaturated end groups at the ω end (macromonomer). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 597–607, 2004  相似文献   
2.
The effects of the size (pseudo‐generation number) and nature of end groups on physical and rheological properties were investigated for a series of hyperbranched polyesters based on an ethoxylated pentaerythritol core and 2,2‐bis‐(hydroxymethyl)propionic acid repeat units. The observed linear dependence of the melt viscosity on the molar mass in the high pseudo‐generation‐number limit indicated that entanglement effects were substantially absent. Moreover, the marked influence of end capping of the end groups on the physical and rheological properties suggested that intermolecular interactions were dominated by contacts between the outer shells of the molecules, in which the end groups were assumed to be concentrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1218–1225, 2004  相似文献   
3.
A detailed investigation of addition–fragmentation chain transfer (AFCT) in the free‐radical polymerization of methyl methacrylate (MMA) in the presence of methyl α‐(bromomethyl)acrylate (MBMA) was carried out to elucidate mechanistic details with efficient macromonomer synthesis as an underlying goal. Advanced modeling techniques were used in connection with the experimental work. Curve fitting of simulated and experimental molecular weight distributions with respect to the rate coefficient for addition of propagating radicals to MBMA (kadd) over 60–120 °C resulted in Eadd = 21.7 kJ mol?1 and Aadd = 2.18 × 106 M?1 s?1 and a very weak temperature dependence of the chain‐transfer constant (EaddEp). The rate coefficient for fragmentation of adduct radicals at 60 °C was estimated as kf ≈ 39 s?1 on the basis of experimental data of the MMA conversion and the concentration of 2‐carbomethoxy‐2‐propenyl end groups. The approach developed is generic and can be applied to any AFCT system in which copolymerization does not occur and in which the resulting unsaturated end groups do not undergo further reactions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2640–2650, 2004  相似文献   
4.
Bimolecular termination in nitroxide‐mediated radical polymerization in miniemulsion has been investigated through the heating of a polystyrene–2,2,6,6‐tetramethylpiperidinyl‐1‐oxy macroinitiator and its 4‐hydroxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy analogue in an aqueous toluene dispersion with sodium dodecyl benzenesulfonate as a surfactant at 125 °C. The level of bimolecular termination by combination, evaluated from the high‐molecular‐weight shoulder, was higher in miniemulsion than in solution and increased with decreasing particle size. Quantitative analysis revealed that these results cannot be rationalized solely by nitroxide partitioning to the aqueous phase. The results are explained by an interface effect, by which nitroxide is adsorbed or located at the aqueous–organic interface. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4995–5004, 2007  相似文献   
5.
Using a monodisperse PMMA dispersion, it was shown that light reflection at the sample cuvette walls may greatly influence the results of both static (SLS) and dynamic (DLS) light scattering experiments. Considering SLS, this reflection phenomenon mostly causes an overestimation of the scattered intensity at high scattering angles, which may give rise to the emergence of an additional, artificial peak in the lower region of the particle size distribution. On the other hand, the influcence of reflection on DLS measurements was shown to be particularly important in the upper region of the particle size distribution. The experimentally observed phenomena were explained from the basic principles of both particle sizing methods. Finally, it was shown that the disturbing effect of reflection could be avoided by modifying either the hardware or the software of the static and dynamic light scattering technique.  相似文献   
6.
We prove that for every fixed k and ? ≥ 5 and for sufficiently large n, every edge coloring of the hypercube Qn with k colors contains a monochromatic cycle of length 2 ?. This answers an open question of Chung. Our techniques provide also a characterization of all subgraphs H of the hypercube which are Ramsey, that is, have the property that for every k, any k‐edge coloring of a sufficiently large Qn contains a monochromatic copy of H. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 196–208, 2006  相似文献   
7.
Sulfonic cation exchangers with two ion exchange group concentrations (0.5 and 2.4 mmol/g, samples A and B, respectively) were obtained by sulfonation of a porous styrene (S) and divinylbenzene (DVB) copolymer with chlorosulfonic acid. Strong thermal decomposition of the sulfonated copolymer A, accompanied by significant changes in its porous structure, starts at ca. 400°C. The char has no sulfonic groups. After heat treatment at 400°C in steam, a sorbent was obtained (yield 65%) that shows higher phenol sorption than the untreated sample when related to the bed volume. The chlorosulfonic derivatives of the initial copolymer were less thermally resistant than the sulfonic ones obtained by hydrolysis. Pyrolysis of the cation exchanger B, in its H+ and Ca2+ forms, was carried out at 900°C (yield of both chars close to 30%). By subsequent steam activation at 800°C to a 50% burn-off of the char, sorbents with well-developed, but distinctly different, porous structures were obtained. The activated char from the sulfonated copolymer in its hydrogen form was highly microporous and indicated an effective surface area of 1180 m2/g. However, because of a low contribution of mesopores, its ability to adsorb phenol from the liquid phase was not very high. The activated char from the calcium-doped copolymer, indicating a smaller surface area (580 m2/g) but characterized by a well-developed mesoporosity, was a better sorbent for phenol. © 1994 John Wiley & Sons, Inc.  相似文献   
8.
The adsorption of the dicarboxylates o-phthalate, maleate, fumarate, malonate, and oxalate (representing ligands with the general composition O2C---Cn---CO2; n=0, 1, or 2) on gibbsite were studied by means of quantitative batch adsorption experiments and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The interpretations of ATR-FTIR spectra were aided by comparison with IR spectra of solution species and by results from theoretical frequency calculations. The main objectives of the study were to identify the molecular level bonding mechanisms of the dicarboxylates to gibbsite, and to investigate how these were influenced by the composition and structure of the ligands. Carboxylates with n=2 formed predominantly outer sphere complexes, whereas the importance of inner sphere complexes progressively increased for n=1 and 0. The inner sphere structures were identified as mononuclear chelates with one oxygen from each carboxylate group bonded to Al(III) at the surface. This showed the importance of chelate ring structure for the formation of inner sphere surface complexes, with stabilities of the complexes increasing in the order seven-membered ring less than six-membered ring less than five-membered ring. For ligands with n=2 only small variations in surface speciation were observed as a function of steric factors; irrespective of the relative positions of the carboxylate groups and bulkiness of the ligands outer sphere bonding is the dominating adsorption mode. Adsorption experiments were also conducted with gibbsite particles exhibiting differences in shape and surface roughness. These experiments showed that inner sphere complexes were favored on the less well-developed and more irregular gibbsite particles.  相似文献   
9.
Segmented block copolymers based on poly(ethylene oxide) (PEO) flexible segments and monodisperse crystallizable bisester tetra‐amide segments were made via a polycondensation reaction. The molecular weight of the PEO segments varied from 600 to 4600 g/mol and a bisester tetra‐amide segment (T6T6T) based on dimethyl terephthalate (T) and hexamethylenediamine (6) was used. The resulting copolymers were melt‐processable and transparent. The crystallinity of the copolymers was investigated by differential scanning calorimetry (DSC) and Fourier Transform infrared (FTIR). The thermal properties were studied by DSC, temperature modulated synchrotron small angle X‐ray scattering (SAXS), and dynamic mechanical analysis (DMA). The elastic properties were evaluated by compression set (CS) test. The crystallinity of the T6T6T segments in the copolymers was high (>84%) and the crystallization fast due to the use of monodisperse tetra‐amide segments. DMA experiments showed that the materials had a low Tg, a broad and almost temperature independent rubbery plateau and a sharp flow temperature. With increasing PEO length both the PEO melting temperature and the PEO crystallinity increased. When the PEO segment length was longer than 2000 g/mol the PEO melting temperature was above room temperature and this resulted in a higher modulus and in higher compression set values at room temperature. The properties of PEO‐T6T6T copolymers were compared with similar poly(propylene oxide) and poly(tetramethylene oxide) copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4522–4535, 2007  相似文献   
10.
Mixtures of colloidal silica spheres and polydimethylsiloxane in cyclohexane with a colloid-polymer size ratio of about one were found to phase separate into two fluid phases, one which is colloid-rich and one which is colloid-poor. In this work the phase separation kinetics of this fluid-fluid phase separation is studied for different compositions of the colloid-polymer mixtures, and at several degrees of supersaturation, with small angle light scattering and with light microscopy. The small angle light scattering curve exhibits a peak that grows in intensity and that shifts to smaller wave vector with time. The characteristic length scale that is obtained from the scattering peak is of the order of a few μm, in agreement with observations by light microscopy. The domain size increases with time as , which might be an indication of coarsening by diffusion and coalescence, like in the case of binary liquid mixtures and polymer blends. For sufficiently low degrees of supersaturation the angular scattering intensity curves satisfy dynamical scaling behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号