首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   516913篇
  免费   5483篇
  国内免费   1408篇
化学   263374篇
晶体学   7243篇
力学   24125篇
综合类   13篇
数学   71290篇
物理学   157759篇
  2020年   2912篇
  2019年   2955篇
  2018年   11541篇
  2017年   12325篇
  2016年   9644篇
  2015年   5316篇
  2014年   6463篇
  2013年   19032篇
  2012年   18279篇
  2011年   29046篇
  2010年   18083篇
  2009年   18054篇
  2008年   25976篇
  2007年   29322篇
  2006年   16233篇
  2005年   21198篇
  2004年   16351篇
  2003年   14694篇
  2002年   12742篇
  2001年   13067篇
  2000年   10191篇
  1999年   7893篇
  1998年   6543篇
  1997年   6336篇
  1996年   6348篇
  1995年   5814篇
  1994年   5515篇
  1993年   5240篇
  1992年   5905篇
  1991年   5813篇
  1990年   5489篇
  1989年   5301篇
  1988年   5552篇
  1987年   5138篇
  1986年   4973篇
  1985年   6959篇
  1984年   7131篇
  1983年   5840篇
  1982年   6292篇
  1981年   6283篇
  1980年   6010篇
  1979年   6293篇
  1978年   6405篇
  1977年   6247篇
  1976年   6235篇
  1975年   6080篇
  1974年   5989篇
  1973年   6176篇
  1972年   3691篇
  1971年   2924篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
ABSTRACT

The Coupled-Cluster (CC) theory is one of the most successful high precision methods used to solve the stationary Schrödinger equation. In this article, we address the mathematical foundation of this theory with focus on the advances made in the past decade. Rather than solely relying on spectral gap assumptions (non-degeneracy of the ground state), we highlight the importance of coercivity assumptions – Gårding type inequalities – for the local uniqueness of the CC solution. Based on local strong monotonicity, different sufficient conditions for a local unique solution are suggested. One of the criteria assumes the relative smallness of the total cluster amplitudes (after possibly removing the single amplitudes) compared to the Gårding constants. In the extended CC theory the Lagrange multipliers are wave function parameters and, by means of the bivariational principle, we here derive a connection between the exact cluster amplitudes and the Lagrange multipliers. This relation might prove useful when determining the quality of a CC solution. Furthermore, the use of an Aubin–Nitsche duality type method in different CC approaches is discussed and contrasted with the bivariational principle.  相似文献   
3.
4.
5.
6.
We study the full counting statistics of transport electrons through a semiconductor two-level quantum dot with Rashba spin–orbit (SO) coupling, which acts as a nonabelian gauge field and thus induces the electron transition between two levels along with the spin flip. By means of the quantum master equation approach, shot noise and skewness are obtained at finite temperature with two-body Coulomb interaction. We particularly demonstrate the crucial effect of SO coupling on the super-Poissonian fluctuation of transport electrons, in terms of which the SO coupling can be probed by the zero-frequency cumulants. While the charge currents are not sensitive to the SO coupling.  相似文献   
7.
8.
9.
10.
Mesoscopic modeling at the pore scale offers great promise in exploring the underlying structure transport performance of flow through porous media. The present work studies the fluid flow subjected to capillarity-induced resonance in porous media characterized by different porous structure and wettability. The effects of porosity and wettability on the displacement behavior of the fluid flow through porous media are discussed. The results are presented in the form of temporal evolution of percentage saturation and displacement of the fluid front through porous media. The present study reveals that the vibration in the form of acoustic excitation could be significant in the mobilization of fluid through the porous media. The dependence of displacement of the fluid on physicochemical parameters like wettability of the surface, frequency along with the porosity is analyzed. It was observed that the mean displacement of the fluid is more in the case of invading fluid with wetting phase where the driving force strength is not so dominant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号