首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   4篇
化学   37篇
力学   4篇
数学   9篇
物理学   24篇
  2022年   1篇
  2020年   2篇
  2017年   1篇
  2016年   7篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   6篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1989年   1篇
  1984年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1957年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
1.
Summary  Thermopiezoelastic materials have recently attracted considerable attention because of their potential use in intelligent or smart structural systems. The governing equations of a thermopiezoelastic medium are more complex due to the intrinsic coupling effects that take place among mechanical, electrical and thermal fields. In this analysis, we deal with the problem of a crack in a semi-infinite, transversely isotropic, thermopiezoelastic material by means of potential functions and Fourier transforms under steady heat-flux loading conditions. The problem is reduced to a singular integral equation that is solved. The thermal stress intensity factor for a crack situated in a cadmium selenide material is calculated. Received 20 March 2001; accepted for publication 18 October 2001  相似文献   
2.
Applications of chalcogenide glass optical fibers   总被引:2,自引:0,他引:2  
Chalcogenide-glass fibers based on sulfide, selenide, telluride and their rare-earth-doped compositions are being actively pursued worldwide. Great strides have been made in reducing optical losses using improved chemical purification techniques, but further improvements are needed in both purification and fiberization technology to attain the theoretical optical losses. Despite this, chalcogenide-glass fibers are enabling numerous applications that include laser power delivery, chemical sensing, and imaging, scanning near field microscopy/spectroscopy, IR sources/lasers, amplifiers and optical switches.  相似文献   
3.
A simple, rapid, sensitive, and selective method for the spectrophotometric microdetermination of silver(I) using ammonium(2′,3′-dihydroxy pyridyl-4′-azo)benzene-4-arsonate (DHP-4A), a water soluble pyridinol azo dye is proposed. The red colored 1:1 (metal to ligand) complex formed has molar extinction coefficient (ε) 2.95 × 104 1 mol−1 cm−1 and absorbs maximum at 535 nm, in highly alkaline medium. Beer's law is obeyed up to 3.36 ppm and Sandell's sensitivity (for an absorbance 0.001) is 0.0037 μg of Ag(I)/cm2. The silver(I)-(DHP-4A) complex has also been used in the microdetermination of iodide ions using ligand exchange reaction. The optimum concentration range of iodide ions which can reproducibly be determined is 1.27–37.9 μg/10 ml.  相似文献   
4.
The debate over the orbital order in the layered triangular lattice system NaTiO2 has been rekindled by the recent experiments of McQueen et al. [Phys. Rev. Lett. 101 (2008) 166402] on NaVO2. In view of this, the nature of orbital ordering, in both high and low temperature phases, is studied using an ab-initio electronic structure calculation. The orbital order observed in our calculations in the low temperature structure of NaTiO2 is consistent with the predictions of McQueen et al. An LDA plus dynamical mean-field calculation shows considerable transfer of spectral weight from the Fermi level but no metal–insulator transition, confirming the poor metallic behavior observed in transport measurements.  相似文献   
5.
Molecular dynamics simulations have been carried out to examine water flow in symmetric and asymmetric open and closed ends nanochannels with hydrophilic surfaces. The results are counterintuitive and the opposite of what is observed in macro-systems-closed channels fill faster with fluid than do their open counterparts. In addition, hybrid closed-open asymmetric channels fill up even faster. These results can be explained on the basis of the fluid-structure interaction that arises through the different vibrational behaviors of the surface molecules that are part of the wall forming these channels. Such effects are not expected to be of significance in macro-channels, and point to an important case where macro and nanochannels exhibit contrary behavior. Since these effects results from strong interactions between the fluid molecules and solid surface, one would not expect them with hydrophobic walls, and our simulations confirm such behavior.  相似文献   
6.
A novel biphenyl base surrogate disrupts 2-aminopurine base stacking while maintaining duplex integrity.  相似文献   
7.
Magnetic microspheres are used as mobile substrates in micro-total-analysis systems (μTAS), since the particles can be selectively functionalized to attach different bioconjugates and can be precisely manipulated using external magnetic field gradients. A large number of MEMS-based bio-analytical devices employ magnetophoretic separation as an important step during their operation. An analytical technique is proposed in this paper that describes the magnetophoretic transport of magnetic microspheres under an imposed magnetic field when there is a pressure-driven or electroosmotic flow through a microchannel. Successful magnetophoretic capture occurs if the strength of the field-inducing magnetic dipole exceeds a critical value, or if the particles are larger than a critical size. The magnetophoretic separator performance is characterized in terms of capture efficiency. The analysis shows that the capture efficiency is a function of two independent non-dimensional parameters, λ and γ that in turn involve all the physical design and operating parameters of the microfluidic separator, e.g., the dipole strength, particle size and susceptibility, fluid viscosity and velocity, channel height, and the separation of the dipole. Parametric plots of capture efficiency as function of λ and γ helps in choosing the right design and operation parameter of a practical microfluidic separator for a target level of performance.  相似文献   
8.
9.
The hydrodynamic control of buoyant nonpremixed flames is investigated by injecting high-momentum fluid through a central microjet. The resulting flame characteristics are mapped for jets of different strengths. The flame height decreases linearly with an increase in the microjet Froude number as the flow changes from a buoyancy-dominated to a momentum-controlled regime. The flame luminosity is reduced by injecting stronger microjets. The jets alter the flame structure by establishing strong entrainment of the ambient air from the quiescent surroundings. The introduction of an inert species as the microjet fluid has a similar qualitative effect as air. Microjet assistance is as effective as partial premixing for reducing the flame height and luminosity.  相似文献   
10.
Due to the growing popularity of distributed computing systems and the increased level of modelling activity in most organizations, significant benefits can be realized through the implementation of distributed model management systems (DMMS). These systems can be defined as a collection of logically related modelling resources distributed over a computer network. In several ways, functions of DMMS are isomorphic to those of distributed database systems. In general, this paper examines issues viewed as central to the development of distributed model bases (DMB). Several criteria relevant to the overall DMB design problem are discussed. Specifically, this paper focuses on the problem of distributing decision models and tools (solvers), henceforth referred to as theModel Allocation Problem (MAP), to individual computing sites in a geographically dispersed organization. In this research, a 0/1 integer programming model is formulated for the MAP, and an efficient dual ascent heuristic is proposed. Our extensive computational study shows in most instances heuristic-generated solutions which are guaranteed to be within 1.5–7% of optimality. Further, even problems with 420 integer and 160,000 continuous variables took no more than 60 seconds on an IBM 3090-600E computer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号