首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
数学   4篇
物理学   8篇
  2020年   2篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2006年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Dark soliton formation in mode-locked lasers is investigated by means of a power-energy saturation model that incorporates gain and filtering saturated with energy, and loss saturated with power. It is found that general initial conditions evolve (mode-lock) into dark solitons under appropriate requirements also met in experimental observations. The resulting pulses are essentially dark solitons of the unperturbed nonlinear Schr?dinger equation. Notably, the same framework also describes bright pulses in anomalous and normally dispersive lasers.  相似文献   
2.
Numerical guided mode solutions of arbitrary cross sectional shaped waveguides are obtained using a finite difference (FD) technique. The standard FD scheme is appropriately modified to capture all discontinuities, due to the change of the refractive index, across the waveguides’ interfaces taking into account the shape of each interface at the same time. The method is applied to the vector Helmholtz equation formulated to describe the electric or magnetic fields in the waveguide (one field is retrieved from the other through Maxwell’s equations). Computational cost is kept to a minimum by exploiting sparse matrix algebra. The waveguides under study have arbitrary cross sectional shape and arbitrary refractive index profile.  相似文献   
3.
Localized wave solutions, often referred to as solitary waves or solitons, are important classes of solutions in nonlinear optics. In optical communications, weakly nonlinear, quasi-monochromatic waves satisfy the “classical” and the “dispersion-managed” nonlocal nonlinear Schrödinger equations, both of which have localized pulses as special solutions. Recent research has shown that mode-locked lasers are also described by similar equations. These systems are variants of the classical nonlinear Schrödinger equation, appropriately modified to include terms which model gain, loss and spectral filtering that are present in the laser cavity. To study their remarkable properties, a computational method is introduced to find localized waves in nonlinear optical systems governed by these equations.  相似文献   
4.
Horikis TP  Kath WL 《Optics letters》2006,31(23):3417-3419
A finite-difference approach based upon the immersed interface method is used to analyze the mode structure of Bragg fibers with arbitrary index profiles. The method allows general propagation constants and eigenmodes to be calculated to a high degree of accuracy, while computation times are kept to a minimum by exploiting sparse matrix algebra. The method is well suited to handle complicated structures comprised of a large number of thin layers with high-index contrast and simultaneously determines multiple eigenmodes without modification.  相似文献   
5.
C. Wang  T.P. Horikis 《Physics letters. A》2010,374(37):3863-3868
We propose an experimentally relevant protocol for the controlled generation of matter-wave dark solitons in atomic Bose-Einstein condensates (BECs). In particular, using direct numerical simulations, we show that by switching-on a spatially inhomogeneous (step-like) change of the s-wave scattering length, it is possible to generate a controllable number of dark solitons in a quasi-one-dimensional BEC. A similar phenomenology is also found in the two-dimensional setting of “disk-shaped” BECs but, as the solitons are subject to the snaking instability, they decay into vortex structures. A detailed investigation of how the parameters involved affect the emergence and evolution of solitons and vortices is provided.  相似文献   
6.
Asymptotic Analysis of Pulse Dynamics in Mode-Locked Lasers   总被引:1,自引:0,他引:1  
Solitons of the power-energy saturation (PES) equation are studied using adiabatic perturbation theory. In the anomalous regime individual soliton pulses are found to be well approximated by solutions of the classical nonlinear Schrödinger (NLS) equation with the key parameters of the soliton changing slowly as they evolve. Evolution equations are found for the pulse amplitude(s), velocity(ies), position(s), and phase(s) using integral relations derived from the PES equation. The results from the integral relations are shown to agree with multi-scale perturbation theory. It is shown that the single soliton case exhibits mode-locking behavior for a wide range of parameters, while the higher states form effective bound states. Using the fact that there is weak overlap between tails of interacting solitons, evolution equations are derived for the relative amplitudes, velocities, positions, and phase differences. Comparisons of interacting soliton behavior between the PES equation and the classical NLS equation are also exhibited.  相似文献   
7.
Horikis TP  Elgin JN 《Optics letters》2002,27(17):1516-1518
Evaluating the relative time displacement of the two orthogonally polarized components of a pulse propagating down a birefringent optical fiber is considered. A method that provides analytical expressions for this time displacement is described and generalizes analytical results already published.  相似文献   
8.
Novel soliton solutions of a two-dimensional (2D) nonlocal nonlinear Schrödinger (NLS) system are revealed by asymptotically reducing the system to a completely integrable Davey–Stewartson (DS) set of equations. In so doing, the reductive perturbation method in addition to a multiple scales scheme are utilized to derive both the DS-I and DS-II systems, depending on the strength of the nonlocality, which in turn, may be regarded here as a measure of the surface tension. As such, two different soliton solutions are obtained: the breather and dromion solutions in the case of DS-I (weak nonlocality), as well as lump solutions in the case of DS-II (strong nonlocality). Besides their immediate mathematical importance, our results find a wide range of applications due the high applicability of the relative nonlocal NLS (optics, plasmas, liquid crystals, and thermal media in the strong nonlocality regime, etc.) and hence these structures can also be realized experimentally in various physical setting.  相似文献   
9.
Soliton strings in mode-locked lasers are obtained using a variant of the nonlinear Schrödinger equation, appropriately modified to model power (intensity) and energy saturation. This equation goes beyond the well-known master equation often used to model these systems. It admits mode-locking and soliton strings in both the constant dispersion and dispersion-managed systems in the (net) anomalous and normal regimes; the master equation is contained as a limiting case. Analysis of soliton interactions show that soliton strings can form when pulses are a certain distance apart relative to their width. Anti-symmetric bi-soliton states are also obtained. Initial states mode-lock to these states under evolution. In the anomalous regime individual soliton pulses are well approximated by the solutions of the unperturbed nonlinear Schrödinger equation, while in the normal regime the pulses are much wider and strongly chirped.  相似文献   
10.
One- and two-dimensional solitons of a multicomponent nonlocal nonlinear Schrödinger (NLS) system are constructed. The model finds applications in nonlinear optics, where it may describe the interaction of optical beams of different frequencies. We asymptotically reduce the model, via multiscale analysis, to completely integrable ones in both Cartesian and cylindrical geometries; we thus derive a Kadomtsev-Petviashvili equation and its cylindrical counterpart, Johnson's equation. This way, we derive approximate soliton solutions of the nonlocal NLS system, which have the form of: (a) dark or antidark soliton stripes and (b) dark lumps in the Cartesian geometry, as well as (c) ring dark or antidark solitons in the cylindrical geometry. The type of the soliton, namely dark or antidark, is determined by the degree of nonlocality: dark (antidark) soliton states are formed for weaker (stronger) nonlocality. We perform numerical simulations and show that the derived soliton solutions do exist and propagate undistorted in the original nonlocal NLS system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号