首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
化学   3篇
数学   1篇
物理学   27篇
  2015年   1篇
  2013年   7篇
  2012年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1976年   1篇
排序方式: 共有31条查询结果,搜索用时 46 毫秒
1.
2.
3.
4.
A quantitative structure determination of a newly discovered (2×2) adsorption phase of acetylene chemisorbed on Pd{111} has been performed by scanned-energy mode photoelectron diffraction: this phase corresponds to the threshold coverage for the catalytic conversion of acetylene to benzene. The carbon atoms in the C2H2 molecule are located almost over bridge sites with a C–C bond length of 1.34+0.10 Å, the centre of the molecule being positioned almost over a hollow site. Of the two hollow sites the hcp site (directly above a second layer Pd atom) is favoured, particularly by a subset of the data most sensitive to this aspect of the structure, but the full analysis indicates that the fcc site (above a third layer Pd atom) cannot formally be excluded. The adsorption site adopted by acetylene in the higher coverage phase on Pd{111} is essentially identical. This is the dominant structure in the coverage regime which is catalytically active for the conversion of acetylene to benzene. The implications of these findings for acetylene coupling reactions over Pd{111} are discussed.  相似文献   
5.
6.
7.
8.
The technique of ferromagnetic resonance at 23 GHz has been used to determine the first three anisotropy constants of pure Ni down to 4.2K. A temperature and orientation dependent linewidth has also been observed.  相似文献   
9.
The wings of some insects, such as cicadae, have been reported to possess a number of interesting and unusual qualities such as superhydrophobicity, anisotropic wetting and antibacterial properties. Here, the chemical composition of the wings of the Clanger cicada (Psaltoda claripennis) were characterized using infrared (IR) microspectroscopy. In addition, the data generated from two separate synchrotron IR facilities, the Australian Synchrotron Infrared Microspectroscopy beamline (AS‐IRM) and the Synchrotron Radiation Center (SRC), University of Wisconsin‐Madison, IRENI beamline, were analysed and compared. Characteristic peaks in the IR spectra of the wings were assigned primarily to aliphatic hydrocarbon and amide functionalities, which were considered to be an indication of the presence of waxy and proteinaceous components, respectively, in good agreement with the literature. Chemical distribution maps showed that, while the protein component was homogeneously distributed, a significant degree of heterogeneity was observed in the distribution of the waxy component, which may contribute to the self‐cleaning and aerodynamic properties of the cicada wing. When comparing the data generated from the two beamlines, it was determined that the SRC IRENI beamline was capable of producing higher‐spatial‐resolution distribution images in a shorter time than was achievable at the AS‐IRM beamline, but that spectral noise levels per pixel were considerably lower on the AS‐IRM beamline, resulting in more favourable data where the detection of weak absorbances is required. The data generated by the two complementary synchrotron IR methods on the chemical composition of cicada wings will be immensely useful in understanding their unusual properties with a view to reproducing their characteristics in, for example, industry applications.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号