首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   1篇
  国内免费   2篇
化学   32篇
力学   2篇
数学   11篇
物理学   37篇
  2018年   1篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   4篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1982年   2篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1966年   1篇
  1943年   2篇
  1932年   1篇
排序方式: 共有82条查询结果,搜索用时 0 毫秒
1.
A new model for the noise processes in a travelling-wave semiconductor laser amplifier is presented. This model is based on applying perturbation techniques to the basic travelling-wave rate equations to deduce the noise rate equations. These equations are then used to calculate the power spectral densities of the intensity, electron density and phase noises introduced into a single signal mode propagating through the amplifier. The model can be applied to any gain profile within the amplifier, ranging from unsaturated to completely saturated. Furthermore, in contrast to most other semiconductor laser amplifier models, this model does not require the homogenization of the photon field over the length of the device.  相似文献   
2.
Following on from our previous work on Sc, Fe, Cr, and Al (Part I; see J. Phys. Chem. A, 105 (2001) 238), the geometries and infrared spectra of the trivalent metal tris-acetylacetonate complexes (M[O2C5H7]3; M = Ti, V, Mn, Co) have been studied both experimentally and theoretically using nonlocal hybrid density functional theory with a split-valence plus polarization basis for the ligand and valence triple-zeta for the metal. Unlike the D3 complexes studied in Part I, those of Ti, V and Mn are candidates for Jahn-Teller distortion due to fractional d-shell occupancy. Using scale factors transferred from Part I, our calculated frequencies are in very good agreement with experimentally observed fundamentals. Our investigation shows that the V and Mn complexes distort to C2 ground states, but D3 Ti tris-acetylacetonate is stable. Further investigation of the weak band observed around 800 cm(-1) in the Fe complex (and present in almost all studied first-row transition metal tris-acetylacetonates), which we were unable to assign theoretically in Part I, supports the argument that this band is not a fundamental but is due to Fermi resonance.  相似文献   
3.
4.
We assessed the ability of netted chain fern (Woodwardia areolata) to uptake U and Th from wetland soils on the U.S. Department of Energy’s Savannah River Site in South Carolina. Netted chain fern had the highest Th and U concentrations of all plants collected from the wetland. Ferns grown in contaminated soil (329 mg·kg−1 Th, 44 mg·kg−1 U) in a greenhouse contained 6.4 mg·kg−1 Th and 5.3 mg·kg−1 U compared with 0.13 mg·kg−1 Th and 0.035 mg·kg−1 U in Bermuda grass (Cynodon dactylon). Netted chain fern has potential for the phytoremediation of soils contaminated with Th and U.  相似文献   
5.
Solvation of the thallous ion in dilute solutions of six binary solvent systems (formamide/water,N-methylformamide/water,N-ethylformamide/water, formamide/N-methylformamide, formamide/N-ethylformamide, andN-methylformamide/N-ethylformamide) was studied with205Tl NMR spectroscopy. An attempt was made to separate solvation effects related to the electrondonating ability (Lewis basicity) of the solvents from effects resulting from structural changes in the solvation sphere. Structural effects were found to be greatest in theN-methylformamide/water system and least in theN-methylformamide/formamide system.  相似文献   
6.
The magnetic shielding constants of the different atoms of formamide, hydrated formamide and N-methylformamide are calculated by anab initio method. For the protons of formamide the measured differences between their chemical shifts are correctly reproduced by theory, provided that the molecular geometry used as input is carefully chosen. The differences between the values of the magnetic shielding constants calculated for formamide and hydrated formamide show that intermolecular hydrogen bonding produces variations of chemical shifts for all the atoms of the molecule except the formyl proton. The calculated chemical shift variations between formamide and N-methylformamide are compared to the experimental values and discussed in relation with different hydrogen bonding possibilities of the two molecules. The calculation of the contact term of the spin-spin coupling constants of formamide and hydrated formamide shows that in most cases the measured trends are satisfactorily reproduced and that the variations of these terms upon hydration are less than 3%.  相似文献   
7.
8.
A large data set of charged-pion (pi+/-) electroproduction from both hydrogen and deuterium targets has been obtained spanning the low-energy residual-mass region. These data conclusively show the onset of the quark-hadron duality phenomenon, as predicted for high-energy hadron electroproduction. We construct several ratios from these data to exhibit the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark-->pion production mechanisms.  相似文献   
9.
Reactions of the third-row transition metal cation Os(+) with H(2), D(2), and HD to form OsH(+) (OsD(+)) were studied using a guided ion beam tandem mass spectrometer. A flow tube ion source produces Os(+) in its (6)D (6s(1)5d(6)) electronic ground state level. Corresponding state-specific reaction cross sections are obtained. The kinetic energy dependences of the cross sections for the endothermic formation of OsH(+) and OsD(+) are analyzed to give a 0 K bond dissociation energy of D(0)(Os(+)-H) = 2.45 ± 0.10 eV. Quantum chemical calculations are performed here at several levels of theory, with B3LYP approaches generally overestimating the experimental bond energy whereas results obtained using BHLYP and CCSD(T), coupled-cluster with single, double, and perturbative triple excitations, levels show good agreement. Theory also provides the electronic structures of these species and the potential energy surfaces for reaction. Results from the reactions with HD provide insight into the reaction mechanism and indicate that Os(+) reacts via a direct reaction. We also compare this third-row transition metal system with the first-row and second-row congeners, Fe(+) and Ru(+), and find that Os(+) reacts more efficiently with dihydrogen, forming a stronger M(+)-H bond. These differences can be attributed to the lanthanide contraction and relativistic effects.  相似文献   
10.
Reactions of the late third-row transition metal cation Au(+) with H(2), D(2), and HD are examined using guided ion beam tandem mass spectrometry. A flow tube ion source produces Au(+) in its (1)S (5d(10)) electronic ground state level. Corresponding state-specific reaction cross sections for forming AuH(+) and AuD(+) as a function of kinetic energy are obtained and analyzed to give a 0 K bond dissociation energy of D(0)(Au(+)-H) = 2.13 ± 0.11 eV. Quantum chemical calculations at the B3LYP∕HW+∕6-311+G(3p) and B3LYP∕Def2TZVPP levels performed here show good agreement with the experimental bond energy. Theory also provides the electronic structures of these species and the reactive potential energy surfaces. We also compare this third-row transition metal system with previous results for analogous reactions of the first-row and second-row congeners, Cu(+) and Ag(+). We find that Au(+) has a stronger M(+)-H bond, which can be explained by the lanthanide contraction and relativistic effects that alter the relative size of the valence s and d orbitals. Results from reactions with HD provide insight into the reaction mechanism and indicate that ground state Au(+) reacts largely via a direct mechanism, in concordance with the behavior of the lighter group 11 metal ions, but includes more statistical behavior than these metals as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号