首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  国内免费   1篇
化学   1篇
力学   2篇
数学   9篇
物理学   14篇
  2021年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1982年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Nielsen SA  Hesthaven JS 《Ultrasonics》2002,40(1-8):177-180
The use of ultrasound to measure elastic field parameters as well as to detect cracks in solid materials has received much attention, and new important applications have been developed recently, e.g., the use of laser generated ultrasound in non-destructive evaluation (NDE). To model such applications requires a realistic calculation of field parameters in complex geometries with discontinuous, layered materials. In this paper we present an approach for solving the elastic wave equation in complex geometries with discontinuous layered materials. The approach is based on a pseudospectral elastodynamic formulation, giving a direct solution of the time-domain elastodynamic equations. A typical calculation is performed by decomposing the global computational domain into a number of subdomains. Every subdomain is then mapped on a unit square using transfinite blending functions and spatial derivatives are calculated efficiently by a Chebyshev collocation scheme. This enables that the elastodynamic equations can be solved within spectral accuracy, and furthermore, complex interfaces can be approximated smoothly, hence avoiding staircasing. A global solution is constructed from the local solutions by means of characteristic variables. Finally, the global solution is advanced in time using a fourth order Runge-Kutta scheme. Examples of field prediction in discontinuous solids with complex geometries are given and related to ultrasonic NDE.  相似文献   
5.
An integral equation formulation for buoyancy-driven convection problems is developed and illustrated. Buoyancy-driven convection in a bounded cylindrical geometry with a free surface is studied for a range of aspect ratios and Nusselt numbers. The critical Rayleigh number, the nature of the cellular motion, and the heat transfer enhancement are computed using linear theory. Green's functions are used to convert the linear problem into linear Fredholm integral equations. Theorems are proved which establish the properties of the eigenvalues and eigenfunctions of the linear integral operator which appears in these equations.  相似文献   
6.
The in-coupling process for grating-coupled planar optical waveguide sensors is investigated in the case of TE waves. A simple analytical model based on the Rayleigh–Fourier–Kiselev method is applied to take into account the depth of the grating coupler, which is usually neglected in the modeling. Analytical expressions are derived both for the position and width of the in-coupling peaks to illustrate the effects of grating depth on the guided mode resonances in grating coupled waveguide sensors. Numerical computations verify the model for shallow gratings both in terms of peak shape and position and provide the limitations for the analytical formulas.  相似文献   
7.
The classic Lebesgue ANOVA expansion offers an elegant way to represent functions that depend on a high-dimensional set of parameters and it often enables a substantial reduction in the evaluation cost of such functions once the ANOVA representation is constructed. Unfortunately, the construction of the expansion itself is expensive due to the need to evaluate high-dimensional integrals. A way around this is to consider an alternative formulation, known as the anchored ANOVA expansion. This formulation requires no integrals but has an accuracy that depends sensitively on the choice of a special parameter, known as the anchor point.We present a comparative study of several strategies for the choice of this anchor point and argue that the optimal choice of this anchor point is the center point of a sparse grid quadrature. This choice induces no additional cost and, as we shall show, results in a natural truncation of the ANOVA expansion. The efficiency and accuracy is illustrated through several standard benchmarks and this choice is shown to outperform the alternatives over a range of applications.  相似文献   
8.
We observe that polynomial measure modifications for families of univariate orthogonal polynomials imply sparse connection coefficient relations. We therefore propose connecting L 2 expansion coefficients between a polynomial family and a modified family by a sparse transformation. Accuracy and conditioning of the connection and its inverse are explored. The connection and recurrence coefficients can simultaneously be obtained as the Cholesky decomposition of a matrix polynomial involving the Jacobi matrix; this property extends to continuous, non-polynomial measure modifications on finite intervals. We conclude with an example of a useful application to families of Jacobi polynomials with parameters (γ,δ) where the fast Fourier transform may be applied in order to obtain expansion coefficients whenever 2γ and 2δ are odd integers.  相似文献   
9.
We consider the development of efficient and fast computational methods for parametrized electromagnetic scattering problems involving many scattering three dimensional bodies. The parametrization may describe the location, orientation, size, shape and number of scattering bodies as well as properties of the source field such as frequency, polarization and incident direction. The emphasis is on problems that need to be solved rapidly to accurately simulate the interaction of scattered fields under parametric variation, e.g., for design, detection, or uncertainty quantification. For such problems, the use of a brute force approach is often ruled out due to the computational cost associated with solving the problem for each parameter value.In this work, we propose an iterative reduced basis method based on a boundary element discretization of few reference scatterers to resolve the computationally challenging large scale problem. The approach includes (i) a computationally intensive offline procedure to create a selection of a set of snapshot parameters and the construction of an associated reduced basis for each reference scatterer and (ii) an inexpensive online algorithm to generate the surface current and scattered field of the parametrized configuration, for any choice of parameters within the parameter domains used in the offline procedure. Comparison of our numerical results with directly measured results for some benchmark configurations demonstrate the power of our method to rapidly simulate the interacting electromagnetic fields under parametric variation of the overall multiple particle configuration.  相似文献   
10.
This paper reports a new flow-through fluoroimmunosensor, the function of which is based on antibodies immobilized on an inmunoreactor of controlled-pore glass (CPG), for determination of digoxin, used in the treatment of congestive heart failure and artery disease. The immunosensor has a detection limit of 1.20 microg L(-1) and provides high reproducibility (RSD=4.5% for a concentration of 0.0025 mg L(-1), and RSD=6.7% for 0.01 mg L(-1)). The optimum working concentration range was found to be 1.2 x 10(-3)-4.0 x 10(-2) mg L(-1). The lifetime of the immunosensor was about 50 immunoassays; if stored unused its lifetime can be extended to three months. A sample speed of about 10-12 samples per hour can be attained. Possible interference from substances with structures similar to digoxin (morphine, heroin, tebaine, codeine, pentazocine and narcotine) was investigated. No cross-reactivity was seen at the highest digoxin: interferent ratio studied (1:100). The proposed fluoroimmunosensor was successfully used to determine digoxin concentrations in human serum samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号