首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
化学   8篇
数学   1篇
物理学   3篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2012年   1篇
  2011年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Adsorption of anionic polyelectrolytes, sodium salts of carboxymethyl celluloses (CMCs) with different degrees of substitution (DS = 0.9 and 1.2), from aqueous electrolyte solutions onto regenerated cellulose surfaces was studied using quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) experiments. The influence of both calcium chloride (CaCl(2)) and sodium chloride (NaCl) on CMC adsorption was examined. The QCM-D results demonstrated that CaCl(2) (divalent cation) caused significantly greater CMC adsorption onto regenerated cellulose surfaces than NaCl (monovalent cation) at the same ionic strength. The CMC layers adsorbed onto regenerated cellulose surfaces from CaCl(2) solutions exhibited greater stability upon exposure to flowing water than layers adsorbed from NaCl solutions. Both QCM-D and SPR results showed that CMC adsorption onto regenerated cellulose surfaces from CaCl(2) solutions increased with increasing CaCl(2) concentration up to the solubility limit (10 mM). Voigt-based viscoelastic modeling of the QCM-D data indicated that the CMC layers adsorbed onto regenerated cellulose surfaces had shear viscosities of η(f) ≈ 10(-3) N·s·m(-2) and elastic shear moduli of μ(f) ≈ 10(5) N·m(-2). Furthermore, the combination of SPR spectroscopy and QCM-D showed that the CMC layers contained 90-95% water. Adsorption isotherms for CMCs in CaCl(2) solutions were also obtained from QCM-D and were fit by Freundlich isotherms. This study demonstrated that CMC adsorption from CaCl(2) solutions is useful for the modification of cellulose surfaces.  相似文献   
2.
The geometric and electronic structures of Fe islands on MgO film layers were studied with scanning tunneling microscopy and spectroscopy. The MgO layers were grown on a Nb-doped single crystal SrTiO3 (100) surface. Deposited Fe atoms aggregate into islands, the height and diameter of which are about 2.5 and 9.4 nm respectively. Fe islands modify the electronic structure of MgO surface; a ring type depression in the scanning tunneling microscope topography appears by lowered local electron density of states around Fe islands. We find that adsorbed Fe atoms reduce the gap states of MgO layers around Fe islands, which is attributed to the reason for the depletion of the electronic density of states.  相似文献   
3.
We present in this paper several efficient numerical schemes for the magneto-hydrodynamic (MHD) equations. These semi-discretized (in time) schemes are based on the standard and rotational pressure-correction schemes for the Navier-Stokes equations and do not involve a projection step for the magnetic field. We show that these schemes are unconditionally energy stable, present an effective algorithm for their fully discrete versions and carry out demonstrative numerical experiments.  相似文献   
4.
We report a C−F reductive elimination from a characterized first-row aryl metal fluoride complex. Reductive elimination from the presented nickel(III) complexes is faster than C−F bond formation from any other characterized aryl metal fluoride complex.  相似文献   
5.
Evaluation of the relative rates of the cobalt-catalyzed C(sp2)–C(sp3) Suzuki–Miyaura cross-coupling between the neopentylglycol ester of 4-fluorophenylboronic acid and N-Boc-4-bromopiperidine established that smaller N-alkyl substituents on the phenoxyimine (FI) supporting ligand accelerated the overall rate of the reaction. This trend inspired the design of optimal cobalt catalysts with phenoxyoxazoline (FOx) and phenoxythiazoline (FTz) ligands. An air-stable cobalt(II) precatalyst, (FTz)CoBr(py)3 was synthesized and applied to the cross-coupling of an indole-5-boronic ester nucleophile with a piperidine-4-bromide electrophile that is relevant to the synthesis of reported toll-like receptor (TLR) 7/8 antagonist molecules including afimetoran. Addition of excess KOMe⋅B(OiPr)3 improved catalyst lifetime due to attenuation of alkoxide basicity that otherwise resulted in demetallation of the FI chelate. A first-order dependence on the cobalt precatalyst and a saturation regime in nucleophile were observed, supporting turnover-limiting transmetalation and the origin of the observed trends in N-imine substitution.  相似文献   
6.
Two new heterometallic metal–organic frameworks (MOFs), LnZnTPO 1 and 2 , and two homometallic MOFs, LnTPO 3 and 4 (Ln=Eu for 1 and 3 , and Tb for 2 and 4 ; H3TPO=tris(4-carboxyphenyl)phosphine oxide) were synthesized, and their structures and properties were analyzed. They were prepared by solvothermal reaction of the C3-symmetric ligand H3TPO with the corresponding metal ion(s) (a mixture of Ln3+ and Zn2+ for 1 and 2 , and Ln3+ alone for 3 and 4 ). Single-crystal XRD (SXRD) analysis revealed that 1 and 3 are isostructural to 2 and 4 , respectively. TGA showed that the framework is thermally stable up to about 400 °C for 1 and 2 , and about 450 °C for 3 and 4 . PXRD analysis showed their pore-structure distortions without noticeable framework–structure changes during drying processes. The shapes of gas sorption isotherms for 1 and 3 are almost identical to those for 2 and 4 , respectively. Solvothermal immersion of 1 and 2 in Tb3+ and Eu3+ solutions resulted in the framework metal-ion exchange affording 4 and 3 , respectively, as confirmed by photoluminescence (PL), PXRD, IR, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and energy-dispersive X-ray (EDX) analyses.  相似文献   
7.
8.
A new class of ortho- and meta-substituted tetraphenols at the terminal phenyl residues with a biphenylene unit in the middle were synthesized and the effect of the substitution position on the spiroborate-based double-stranded helicate formation with sodium borohydride was investigated. The ortho-substitution considerably hampered the spiroborate formation between the terminal biphenol units and the boron atoms, whereas the meta-substituted oligomers formed a double-stranded helicate bridged by spiroborate groups accommodating a sodium cation in the center, which displayed an extension and contraction motion triggered by the removal and addition of sodium ions in solution.  相似文献   
9.
Purpose: Most therapeutic agents have limitations owing to low selectivity and poor solubility, resulting in post-treatment side effects. Therefore, there is a need to improve solubility and develop new formulations to deliver therapeutic agents specifically to the target site. Gelatin is a natural protein that is composed of several amino acids. Previous studies revealed that gelatin contains arginyl-glycyl-aspartic acid (RGD) sequences that become ligands for the integrin receptors expressed on cancer cells. Thus, in this study, we aimed to increase the efficiency of drug delivery into cancer cells by coating drug-encapsulating liposomes with gelatin (gelatin-coated liposomes, GCLs). Methods: Liposomes were coated with gelatin using electrostatic interaction and covalent bonding. GCLs were compared with PEGylated liposomes in terms of their size, zeta potential, encapsulation efficiency, stability, dissolution profile, and cell uptake. Results: Small-sized and physically stable GCLs were prepared, and they showed high drug-encapsulation efficiency. An in vitro dissolution study showed sustained release depending on the degree of gelatin coating. Cell uptake studies showed that GCLs were superior to PEGylated liposomes in terms of cancer cell-targeting ability. Conclusions: GCLs can be a novel and promising carrier system for targeted anticancer agent delivery. GCLs, which exhibited various characteristics depending on the coating degree, could be utilized in various ways in future studies.  相似文献   
10.
Current fluctuation in electronic systems has been extensively studied due to the fact that they can pro- vide further information of charge transport compared to the conventional conductance measurements. Shot noise is the non-equilibrium electrical fluctuation due to the discrete nature of carriers flowing through a device, reflecting correlation effects. A well-known shot noise power density as uncorrelated charge trans- mission is S - 2el, with I the average current. This Poissonian shot noise can be observed in sys- tems with a single tunnel barrier. Positive or neg- ative correlations between charged particles, induced by the Coulomb interaction and the Pauli exclusion principle, can enhance or suppress shot noise from the Poissonian value. Numerous experimental and the- oretical studies of the shot noise in mesoseopie sys- tems have been carried out on various devices such as self-assembled quantum dots, resonant tunnel- ing diodes,molecular junction devices, quan- tum point contacts,semiconductor quantum dots, and metal atomic chains. Externally driven exci- tations which affect shot noise properties were also investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号