首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
数学   2篇
物理学   33篇
  2013年   1篇
  2007年   2篇
  2006年   1篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  1999年   3篇
  1995年   1篇
  1994年   2篇
  1991年   3篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1979年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
Impact noise and the equal energy hypothesis   总被引:2,自引:0,他引:2  
The equal energy hypothesis (EEH) was evaluated over a limited range of conditions by exposing four groups of chinchillas to impact noise (200-ms B duration) presented at a fixed rate of four impacts per second. The intensity of the impacts (107-125 dB peak SPL) and the duration (120-1.87 h) of the four exposure conditions were counterbalanced so that the four groups received the same total energy. The traumatic power of the exposures was assessed by measuring the threshold shift of the auditory evoked response and the amount of hair cell loss. Exposure between 107 and 119 dB were consistent with the EEH in that they produced roughly the same amount of permanent threshold shift (less than 20 dB) and hair cell loss (less than 20%). However, the 125-dB exposure produced substantially more threshold shift and hair cell loss than the three lower intensities. Thus, the EEH may be applicable only at lower impact intensities; above a "critical intensity" the amount of damage increases significantly.  相似文献   
2.
3.
Sixteen groups of chinchillas (N=140) were exposed to various equivalent energy noise paradigms at 100 dB(A) or 103 dB(A) SPL. Eleven groups received an interrupted, intermittent, and time varying (IITV) non-Gaussian exposure quantified by the kurtosis statistic. The IITV exposures, which lasted for 8 hday, 5 daysweek for 3 weeks, were designed to model some of the essential features of an industrial workweek. Five equivalent energy reference groups were exposed to either a Gaussian or non-Gaussian 5 days, 24 hday continuous noise. Evoked potentials were used to estimate hearing thresholds and surface preparations of the organ of Corti quantified the sensory cell population. For IITV exposures at an equivalent energy and kurtosis, the temporal variations in level did not alter trauma and in some cases the IITV exposures produced results similar to those found for the 5 day continuous exposures. Any increase in kurtosis at a fixed energy was accompanied by an increase in noise-induced trauma. These results suggest that the equal energy hypothesis is an acceptable approach to evaluating noise exposures for hearing conservation purposes provided that the kurtosis of the amplitude distribution is taken into consideration. Temporal variations in noise levels seem to have little effect on trauma.  相似文献   
4.
Eight groups of chinchillas (N=74) were exposed to various equivalent energy [100 or 106 dB(A) sound pressure level (SPL)] noise exposure paradigms. Six groups received an interrupted, intermittent, time varying (IITV) Gaussian noise exposure that lasted 8 h/d, 5 d/week for 3 weeks. The exposures modeled an idealized workweek. At each level, three different temporal patterns of Gaussian IITV noise were used. The 100 dB(A) IITV exposure had a dB range of 90-108 dB SPL while the range of the 106 dB(A) IITV exposure was 80-115 dB SPL. Two reference groups were exposed to a uniform 100 or 106 dB(A) SPL noise, 24 h/d for 5 days. Each reference group and the three corresponding IITV groups comprised a set of equivalent energy exposures. Evoked potentials were used to estimate hearing thresholds and surface preparation histology quantified sensory cell populations. All six groups exposed to the IITV noise showed threshold toughening effects of up to 40 dB. All IITV exposures produced hearing and sensory cell loss that was similar to their respective equivalent energy reference group. These results indicate that for Gaussian noise the equal energy hypothesis for noise-induced hearing loss is an acceptable unifying principle.  相似文献   
5.
Impulse noise: critical review   总被引:4,自引:0,他引:4  
A review of the last 10 years of research on impulse noise reveals certain insights and perspectives on the biological and audiological effects of exposures to impulse noise. First, impulse noise may damage the cochlea by direct mechanical processes. Second, after exposure to impulse noise, hearing may recover in an erratic, nonmonotonic pattern. Third, even though the existing damage-risk criteria evaluate impulse noise in terms of level, duration, and number, often parameters such as temporal pattern, waveform, and rise time are also important in the production of a hearing loss. Fourth, the effects of impulse noise are often inconsistent with the principle of the equal energy hypothesis. Fifth, impulse noise can interact with background continuous noise to produce greater hearing loss than would have been predicted by the simple sum of the individual noises.  相似文献   
6.
7.
8.
An interrupted noise exposure of sufficient intensity, presented on a daily repeating cycle, produces a threshold shift (TS) following the first day of exposure. TSs measured on subsequent days of the exposure sequence have been shown to decrease relative to the initial TS. This reduction of TS, despite the continuing daily exposure regime, has been called a cochlear toughening effect and the exposures referred to as toughening exposures. Four groups of chinchillas were exposed to one of four different noises presented on an interrupted (6 h/day for 20 days) or noninterrupted (24 h/day for 5 days) schedule. The exposures had equivalent total energy, an overall level of 100 dB(A) SPL, and approximately the same flat, broadband long-term spectrum. The noises differed primarily in their temporal structures; two were Gaussian and two were non-Gausssian, nonstationary. Brainstem auditory evoked potentials were used to estimate hearing thresholds and surface preparation histology was used to determine sensory cell loss. The experimental results presented here show that: (1) Exposures to interrupted high-level, non-Gaussian signals produce a toughening effect comparable to that produced by an equivalent interrupted Gaussian noise. (2) Toughening, whether produced by Gaussian or non-Gaussian noise, results in reduced trauma compared to the equivalent uninterrupted noise, and (3) that both continuous and interrupted non-Gaussian exposures produce more trauma than do energy and spectrally equivalent Gaussian noises. Over the course of the 20-day exposure, the pattern of TS following each day's exposure could exhibit a variety of configurations. These results do not support the equal energy hypothesis as a unifying principal for estimating the potential of a noise exposure to produce hearing loss.  相似文献   
9.
10.
Six monaural chinchillas were exposed to a repetitive, reverberant, impulse noise for a total of five days, 8 h per day. The average peak overpressure within the holding cage was 113 dB. The reverberation time (pressure fluctuation envelope within 20 dB of peak) was 160 ms. Auditory thresholds were measured at 0.25, 0.5, 1, 2, 4, and 8 kHz before and after each day's exposure using either the average-evoked response technique or shock avoidance conditioning. After the last exposure, recovery was monitored for five successive days. Final thresholds were obtained starting at 30 days postexposure after which the animals were sacrificed for cochlear histology. The high frequencies (4, 8 kHz) showed a daily median shift of 40 dB and a 27 dB recovery before the following day's exposure. The low frequencies (0.25, 0.5 kHz) were shifted 35 dB after each day's exposure with a 15 dB recovery overnight. Final median audiograms showed little permanent threshold shift. The cochleagrams for two test animals were found to be normal while the remaining four displayed 10%--40% losses in hair cells at specific cochlear sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号