首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
化学   26篇
物理学   3篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有29条查询结果,搜索用时 78 毫秒
1.
Salimi A  Hallaj R  Ghadermazi M 《Talanta》2005,65(4):888-894
The carbon ceramic electrode prepared with sol-gel technique is modified by a thin film of chlorogenic acid (CGA). By immersing the carbon ceramic electrode in aqueous solution of chlorogenic acid at less than 2 s a thin film of chlorogenic acid adsorbed strongly and irreversibly on the surface of electrode. The cyclic voltammetry of the resulting modified CCE prepared at optimum conditions shows a well-defined stable reversible redox couple due to hydroquinone/quinone system in both acidic and basic solutions. The modified electrode showed excellent electrocatalytic activity toward NADH oxidation and it also showed a high analytical performance for amperometric detection of NADH. The catalytic rate constant of the modified carbon ceramic electrode for the oxidation of NADH is determined by cyclic voltammetry measurement. Under the optimised conditions the calibration curve is linear in the concentration range 1-120 μm. The detection limit (S/N = 3) and sensitivity are 0.2 μM and 25 nA μM−1.The results of six successive measurement-regeneration cycles show relative standard deviations of 2.5% for electrolyte solution containing 1 mM NADH, indicating that the electrode renewal gives a good reproducible and antifouling surface. The advantages of this amperometric detector are: high sensitivity, excellent catalytic activity, short response time t < 2 s, remarkable long-term stability, simplicity of preparation at short time and good reproducibility.  相似文献   
2.
3.
Iridium oxide nanoparticles are grown on a glassy carbon electrode by electrodepositing method. The electrochemical behavior and electrocatalytic activity of modified electrode towards reduction of iodate and periodate are studied. The reductions of both ions occur at the unusual positive peak potential of 0.7 V vs. reference electrode. The modified electrode is employed successfully for iodate and periodates detection using cyclic voltammetry, hydrodynamic amperometry and flow injection analysis (FIA). In the performed experiments, flow injection amperometric determination of iodate and periodate yielded calibration curves with the following characteristics: linear dynamic range up to 100 and 80 μM, sensitivity of 140.9 and 150.6 nA μM−1 and detection limits of 5 and 36 nM, respectively. The repeatability of the modified electrode for 21 injections of 1.5 μM of iodate solution is 1.5%. The interference effects of NO2, NO3, ClO3, BrO3, ClO4, SO42−, Cu2+, Zn2+, Mn2+, Mg2+, Cd2+, Ca2+, Na+, K+, NH4+ and K+, CH3COO and glucose were negligible at the concentration ratio of more than 1000. The obtained attractive analytical performance together with high selectivity and simplicity of the proposed method provide an effective and e novel modified electrode to develop an iodate and periodate sensor. Sensitivity, selectivity, the liner concentration range and the detection limit of the developed sensor are all much better than all known similar sensors in the literature for iodate and periodate determination.  相似文献   
4.
For the first time iridium oxide (IrO2) nanotubes are synthesized by electrodeposition in a polycarbonate (PC) template. Potential cycling (90 cycles) between 0.0 and 0.9 V is used for the preparation of IrOx nanotubes onto the PC template with a pore diameter of 100 nm. Field‐emission scanning electron microscopy (FESEM) images show, that IrO2 nanotubes with uniform diameters of 110±10 nm and an estimated length of 1–3 µm are formed. The electrochemical properties and the electrocatalytic activity of a glassy carbon‐IrOx nanotube modified electrode toward Cr3+ and As3+ oxidation are investigated. Finally, the modified electrode is used for micromolar detection of the proposed analytes using differential pulse voltammetry.  相似文献   
5.
6.
Salimi A  Mamkhezri H  Hallaj R 《Talanta》2006,70(4):823-832
A sol-gel carbon composite electrode (CCE) has been prepared by mixing a sol-gel precursor (e.g. methyltrimethoxysilane) and carbon powder without adding any electron transfer mediator or specific reagents. It was demonstrated that this sensor can be used for simultaneous determination ascorbic acid, neurotransmitters (dopamine and adrenaline) and uric acid. Direct electrochemical oxidation of ascorbic acid, uric acid and catecholamines at a carbon composite electrode was investigated. The experimental results were compared with other common carbon based electrodes, specifically, boron doped diamond, glassy carbon, graphite and carbon paste electrodes. It was found that the CCE shows a significantly higher of reversibility for dopamine. In addition, in comparison to the other electrodes used, for CCE the oxidation peaks of uric acid, ascorbic acid and catecholamines in cyclic and square wave voltammetry were well resolved at the low positive potential with good sensitivity. The advantages of this sensor were high sensitivity, inherent stability and simplicity and ability for simultaneous determination of uric acid, catecholamines and ascorbic acid without using any chromatography or separation systems. The analytical performance of this sensor has been evaluated for detection of biological molecules in urine and serum as real samples.  相似文献   
7.
A two-step sol-gel technique was used here to prepare a carbon ceramic electrode modified with nafion and [Ru(bpy)(tpy)Cl]PF6. This involves two steps: first, forming a bulk-modified carbon ceramic electrode with nafion, and then immersing the electrode into a Ru-complex solution (electroless deposition) for a short period of time (5-25 s). Cyclic voltammograms of the resulting surface-modified carbon ceramic electrode show stable and a well-defined redox couple due to Ru(II)/Ru(III) system with surface-confined characteristic. l-Cysteine (CySH) has been chosen as a model to elucidate the electrocatalytic ability of Ru-complex nafion sol-gel composite electrode. Not only the modified electrode shows excellent catalytic activity toward l-cysteine electrooxidation in pH range 3-9, but the antifouling effect of nafion film also increases the reproducibility of results in comparison with CCE modified with homogeneous mixing of graphite powder and Ru-complex (one step sol-gel method). Under the optimized conditions in amperometry method, the concentration calibration range, detection limit and sensitivity were 0.1-100 μM, 20 nM and 50 nA/μM, respectively. The advantages of this modified electrode are good reproducibility, excellent catalytic activity, simplicity of preparation and especially its antifouling properties towards l-cysteine and its oxidation products. Additionally, it is promising as a detector in flow system or chromatography systems.  相似文献   
8.
Journal of Fluorescence - This work focuses on the synthesis of novel modified core–shell CdTe/CdS quantum dots (QDs) and develops as a fluorescence sensor for glucose determination. The...  相似文献   
9.
In this research a novel osmium complex was used as electrocatalyst for electroreduction of oxygen and H2O2 in physiological pH solutions. Electroless deposition at a short period of time (60 s), was used for strong and irreversible adsorption of 1,4,8,12‐tetraazacyclotetradecane osmium(III) chloride (Os(III)LCl2) ClO4 onto single‐walled carbon nanotubes (SWCNTs) modified GC electrode. The modified electrode shows a pair of well defined and reversible redox couple, Os(IV)/Os(III) at wide pH range (1–8). The glucose biosensor was fabricated by covering a thin film of glucose oxidase onto CNTs/Os‐complex modified electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The fabricated biosensor shows high sensitivity, 826.3 nA μM?1cm?2, low detection limit, 56 nM, fast response time <3 s and wide calibration range 1.0 μM–1.0 mM. The biosensor has been successfully applied to determination of glucose in human plasma. Because of relative low applied potential, the interference from electroactive existing species was minimized, which improved the selectivity of the biosensor. The apparent Michaelis‐Menten constant of GOx on the nanocomposite, 0.91 mM, exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. Excellent electrochemical reversibility, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this glucose biosensor.  相似文献   
10.
A simple procedure was developed to prepare a glassy carbon electrode modified with carbon nanotubes and Ruthenium (III) complexes. First, 25 μl of dimethyl sulfoxide–carbon nanotubes solutions (0.4 mg/ml) was cast on the surface of the glassy carbon electrode and dried in air to form a carbon nanotube film at the electrode surface. Then, the glassy carbon/carbon nanotube-modified electrode was immersed into a Ruthenium (III) complex solution (direct deposition) for a short period of time (10–20 s for multiwalled carbon nanotubes and 20–40 s for single-walled carbon nanotubes). The cyclic voltammograms of the modified electrode in aqueous solution shows a pair of well-defined, stable, and nearly reversible redox couple, Ru(III)/Ru(II), with surface-confined characteristics. The attractive mechanical and electrical characteristics of carbon nanostructures and unique properties and reactivity of Ru complexes are combined. The transfer coefficient (α), heterogeneous electron transfer rate constants (k s), and surface concentrations (Γ) for the glassy carbon/single-walled carbon nanotubes/Ru(III) complex-, glassy carbon/multiwalled carbon nanotubes/Ru(III) complex-, and glassy carbon/Ru(III) complex-modified electrodes were calculated using the cyclic voltammetry technique. The modified electrodes showed excellent catalytic activity, fast response time, and high sensitivity toward the reduction of nicotinamide adenine dinucleotide in phosphate buffer solutions at a pH range of 4–8. The catalytic cathodic current depends on the nicotinamide adenine dinucleotide concentration. In the presence of alcohol dehydrogenase, the modified electrode exhibited a response to addition of acetaldehyde. Therefore, the main product of nicotinamide adenine dinucleotide electroreduction at the Ru(III) complex/carbon nanotube-modified electrode was the enzymatically active NADH. The purposed sensor can be used for acetaldehyde determination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号