首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   2篇
数学   1篇
物理学   8篇
  2016年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1990年   2篇
  1986年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Matrix-assisted laser desorption/ionization (MALDI) mass spectra were obtained from single biological aerosol particles using an aerosol time-of-flight mass spectrometer (ATOFMS). The inlet to the ATOFMS was coupled with an evaporation/condensation flow cell that allowed the aerosol to be coated with matrix material as the sampled stream entered the spectrometer. Mass spectra were generated from aerosol composed either of gramicidin-S or erythromycin, two small biological molecules, or from aerosolised spores of Bacillus subtilis var niger. Three different matrices were used: 3-nitrobenzyl alcohol, picolinic acid and sinapinic acid. A spectrum of gramicidin-S was generated from approximately 250 attomoles of material using a molar ratio of 3-nitrobenzyl alcohol to analyte of approximately 20:1. A single peak, located at 1224 Da, was obtained from the bacterial spores. The washing liquid and extract solution from the spores were analyzed using electrospray mass spectrometry and subsequent MS/MS product ion experiments. This independent analysis suggests that the measured species represents part of the B. subtilis peptidoglycan. The on-line addition of matrix allows quasi-real-time chemical analysis of individual, aerodynamically sized particles, with an overall system residence time of less than 5 seconds. These results suggest that a MALDI-ATOFMS can provide nearly real-time identification of biological aerosols. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   
5.
A new numerical method is introduced that enables a reliable study of disorder‐induced localization of interacting particles. It is based on a quantum mechanical time evolution calculation combined with a finite size scaling analysis. The time evolution of up to four particles in one dimension is studied and localization lengths are defined via the long‐time saturation values of the mean radius, the inverse participation ratio and the center of mass extension. A systematic study of finite size effects using the finite size scaling method is performed in order to extract the localization lengths in the limit of an infinite system size. For a single particle, the well‐known scaling of the localization length λ1 with disorder strength W is observed, λ1W—2. For two particles, an interaction‐induced delocalization is found, confirming previous results obtained by numerically calculating matrix elements of the two‐particle Green's function: in the limit of small disorder, the localization length increases with decreasing disorder as λ2W—4 and can be much larger than <$>\mitlambda λ1. For three and four particles, delocalization is even stronger. Based on analytical arguments, an upper bound for the n‐particle localization length λn is derived and shown to be in agreement with the numerical data, λnλ1. Although the localization length increases superexponentially with particle number and can become arbitrarily large for small disorder, it does not diverge for finite λ1 and n. Hence, no extendedstates exist in one dimension, at least for spinless fermions.  相似文献   
6.
We report on the coherent control of the ultrafast ionization and fragmentation dynamics of the bromochloroalkanes C(2)H(4)BrCl and C(3)H(6)BrCl using shaped femtosecond laser pulses. In closed-loop control experiments on bromochloropropane (C(3)H(6)BrCl) the fragment ion yields of CH(2)Cl(+), CH(2)Br(+), and C(3)H(3)(+) are optimized with respect to that of the parent cation C(3)H(6)BrCl(+). The fragment ion yields are recorded in additional experiments in order to reveal the energetics of cation fragmentation, where laser-produced plasma radiation is used as a tunable pulsed nanosecond vacuum ultraviolet radiation source along with photoionization mass spectrometry. The time structure of the optimized femtosecond laser pulses leads to a depletion of the parent ion and an enhancement of the fragment ions, where a characteristic sequence of pulses is required. Specifically, an intense pump pulse is followed by a less intense probe pulse where the delay is 0.5 ps. Similarly optimized pulse shapes are obtained from closed-loop control experiments on bromochloroethane (C(2)H(4)BrCl), where the fragment ion yield of CH(2)Br(+) is optimized with respect to that of C(2)H(4)BrCl(+) as well as the fragment ion ratios C(2)H(2)(+)/CH(2)Br(+) and C(2)H(3)(+)/C(2)H(4)Cl(+). The assignment of the underlying control mechanism is derived from one-color 804 nm pump-probe experiments, where the yields of the parent cation and several fragments show broad dynamic resonances with a maximum at Δt = 0.5 ps. The experimental findings are rationalized in terms of dynamic ionic resonances leading to an enhanced dissociation of the parent cation and some primary fragment ions.  相似文献   
7.
A new analytical Liouville-space representation of the time-propagator under magic angle spinning (MAS) is introduced using the formalized quantum Floquet theory. This approach has the advantage that it is applicable to the analysis of any type of NMR experiment where MAS is combined with multiple-pulse excitation. General relationships describing the spectral parameters in multiple-quantum (MQ) MAS spectra are derived in this representation. Their use is illustrated with an application to double-quantum (DQ) NMR spectra of dipolar-coupled multi-spin systems. Corresponding to the separation of the MAS time-propagator into a rotor modulated and a dephasing component, two distinct mechanisms for DQ excitation are identified. One of them exploits the rotor-modulated component to excite DQ coherences through dipolar-recoupling techniques, which are familiar for spin pairs. Analytical expressions of the integral intensities and linewidths in the resulting DQ sideband pattern are derived in the form of power series expansions of the inverse rotor frequency, of which coefficients depend on structural parameters. In a multi-spin system they can most reliably be extracted in the fast spinning regime. The other mechanism exploits the dephasing component, which is characteristic to multi-spin systems only. This is shown to give rise to DQ coherences by free evolution at full rotor periods. The possibility to exploit it for selective excitation of higher order MQ coherences is discussed. In either case, the dephasing component also leads to residual broadening. The main results of the theoretical developments are demonstrated experimentally on adamantane.  相似文献   
8.

Background  

The hippocampus is essential for declarative memory synthesis and is a core pathological substrate for Alzheimer's disease (AD), the most common aging-related dementing disease. Acute increases in plasma cortisol are associated with transient hippocampal inhibition and retrograde amnesia, while chronic cortisol elevation is associated with hippocampal atrophy. Thus, cortisol levels could be monitored and managed in older people, to decrease their risk of AD type hippocampal dysfunction. We generated an in silicomodel of the chronic effects of elevated plasma cortisol on hippocampal activity and atrophy, using the systems biology mark-up language (SBML). We further challenged the model with biologically based interventions to ascertain if cortisol associated hippocampal dysfunction could be abrogated.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号