首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   2篇
物理学   3篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
排序方式: 共有5条查询结果,搜索用时 125 毫秒
1
1.
Protein complexes that mediate secretion and adhesion are located on the plasma membrane of pancreatic β cells. Neuroligins and their binding partners, the neurexins, are among these complexes. β cell maturation and physiologically regulated insulin secretion, as a response to high levels of blood glucose, are dependent on their three-dimensional (3D) arrangement. Both insulin secretion and the proliferation rates of β cells dramatically increase when β cells are co-cultured with clusters of a member of the neuroligin family: NL-2. A membranal protein, such as NL-2, has very limited drugability owing to its low biostability and bioavailability. Thus, based on in silico modeling, a short NL-2 peptide (HSA-28), which was able to mimic NL-2-positive effects on β cells, was designed, as we described in previous publication. However, the peptide was active only as a cluster, created by the covering the maghemite (γ-Fe2O3)-based nanoparticles (NPs) with limited biocompatibility. In this brief communication, we will show that conjugation of HSA-28 to biocompatible hydrogel NPs exhibits an impressive protective effect on INS-1E β cells under oxidative stress and induces their proliferation rate via augmentation of PDX1 nuclear translocation. The diameter of coated by the peptide NPs was 206?±?63 nm (DLS) and 114?±?27 nm (cryo-TEM). This significant change in size can be explained by the very hydrophilic character of the proteinoid NPs, inducing adsorption of many water molecules on their surface, which are accounted only by the DLS. The ability of biocompatible hydrogel NPs to prevent apoptosis and increase β cell mass might be used for developing novel β cell protective therapies.
Graphical abstract Effect of covered by bioactive peptide NPs on PDX1 nuclei translocation.
  相似文献   
2.
We recently developed a molecule (GT-73) that blocked leukocyte transendothelial migration from blood to the peripheral tissues, supposedly by affecting the platelet endothelial cell adhesion molecule (PECAM-1) function. GT-73 was tested in an LPS-induced acute respiratory distress syndrome (ARDS) mouse model. The rationale for this is based on the finding that the mortality of COVID-19 patients is partly caused by ARDS induced by a massive migration of leukocytes to the lungs. In addition, the role of tert-butyl and methyl ester moieties in the biological effect of GT-73 was investigated. A human leukocyte, transendothelial migration assay was applied to validate the blocking effect of GT-73 derivatives. Finally, a mouse model of LPS-induced ARDS was used to evaluate the histological and biochemical effects of GT-73. The obtained results showed that GT-73 has a unique structure that is responsible for its biological activity; two of its chemical moieties (tert-butyl and a methyl ester) are critical for this effect. GT-73 is a prodrug, and its lipophilic tail covalently binds to PECAM-1 via Lys536. GT-73 significantly decreased the number of infiltrating leukocytes in the lungs and reduced the inflammation level. Finally, GT-73 reduced the levels of IL-1β, IL-6, and MCP-1 in bronchoalveolar lavage fluid (BALF). In summary, we concluded that GT-73, a blocker of white blood cell transendothelial migration, has a favorable profile as a drug candidate for the treatment of ARDS in COVID-19 patients.  相似文献   
3.
Chemical chaperones prevent protein aggregation. However, the use of chemical chaperones as drugs against diseases due to protein aggregation is limited by the very high active concentrations (mm range) required to mediate their effect. One of the most common chemical chaperones is 4-phenylbutyric acid (4-PBA). Despite its unfavorable pharmacokinetic properties, 4-PBA was approved as a drug to treat ornithine cycle diseases. Here, we report that 2-isopropyl-4-phenylbutanoic acid ( 5 ) has been found to be 2–10-fold more effective than 4-PBA in several in vitro models of protein aggregation. Importantly, compound 5 reduced the secretion rate of autism-linked Arg451Cys Neuroligin3 (R451C NLGN3).  相似文献   
4.
Molecular Diversity - IFN-β is a cytokine that plays a significant role in the immune system. Inhibition of IFN-β might be used as a therapeutic approach to treat septic shock. A...  相似文献   
5.
Protein kinase RNA-activated (PKR) plays an important role in a broad range of intracellular regulatory mechanisms and in the pathophysiology of many human diseases, including microbial and viral infections, cancer, diabetes and neurodegenerative disorders. Recently, several potent PKR inhibitors have been synthesized. However, the enzyme’s multifunctional character and a multitude of PKR downstream targets have prevented the successful transformation of such inhibitors into effective drugs. Thus, the need for additional PKR inhibitors remains. With the help of computer-aided drug-discovery tools, we designed and synthesized potential PKR inhibitors. Indeed, two compounds were found to inhibit recombinant PKR in pharmacologically relevant concentrations. One compound, 6-amino-3-methyl-2-oxo-N-phenyl-2,3-dihydro-1H-benzo[d]imidazole-1-carboxamide, also showed anti-apoptotic properties. The novel molecules diversify the existing pool of PKR inhibitors and provide a basis for the future development of compounds based on PKR signal transduction mechanism.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号