首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
物理学   15篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Results are presented from studies of the electric and emission parameters of transverse volume discharges in neon-sulfur-hexafluoride-propane mixtures at a total pressure of 3–12 kPa. The spatial characteristics of a transverse volume discharge, the plasma radiation spectra in the 130- to 550-nm wavelength range, the waveforms of the discharge voltage and current, and the yield of carbonic products of propane decomposition are investigated at different pressures and different composition of the Ne-SF6-C6H14 mixture.  相似文献   
2.
The influence of the iodine vapor pressure on the output characteristics of a UV lamp pumped by a longitudinal glow discharge is studied. The lamp is filled with a helium-iodine mixture to a pressure of 100–1500 Pa. In the spectral range 320–360 nm, the I2(D′ → A′) band with a peak at 342 nm prevails, while in the bactericidal range, iodine atomic lines at 183.0 and 206.2 nm dominate. The power of the UV lamp is optimized according to the iodine vapor pressure and working mixture composition by numerical simulation.  相似文献   
3.
The emission characteristics of a pulsed-periodic UV radiation source are reported. The source excited by a pulsed-periodic capacitive discharge initiated in helium-iodine vapor, neon-iodine vapor, or krypton-iodine vapor mixtures radiates in the spectral range 200–450 nm. It is shown that most of the plasma radiation power concentrates in the integral line of the iodine atom (206.2 nm) and in the D′-A′ band of the iodine molecule with a maximum at 342 nm. The radiation intensity of the lamp is optimized in accordance with the partial pressure of the inert gases. The discharge plasma parameters that are of interest for simulating the process kinetics and the output characteristics of an UV source based on molecular iodine, atomic iodine, and xenon iodide are calculated in helium-iodine vapor and xenon-iodine vapor mixtures.  相似文献   
4.
The emission parameters of a pulsed capacitive discharge initiated in helium-iodine and neon-iodine mixtures are reported. The discharge plasma emits at wavelengths of 183.0 and 206.2 nm, which correspond to iodine atom spectral lines. The capacitive discharge is initiated in a cylindrical quartz tube with an electrode distance of 10 cm. The discharge radiation is optimized in exciting pulse repetition rate and helium and neon pressures in He(Ne)-I2 mixtures. The optimal pressures of helium, neon, and iodine vapor fall into the ranges 0.8–2.0 kPa, 0.5–1.0 Pa, and ≤60 Pa, respectively.  相似文献   
5.
The emission characteristics of the plasma of repetitively pulsed spontaneous UV-VUV radiation sources on the basis of ArF* (193 nm) and KrF* (249 nm) molecules, and the products of decomposition of sulfur hexafluoride molecules pumped by a transverse volume discharge in a mixture of inert gases with sulfur hexafluoride molecules have been investigated. The discharge emission spectra in the range of 190–780 nm at the low-current and high-current stages of the transverse discharge, the time characteristics of the voltage across the electrodes, the pump current, and the emission of excimer molecules and the products of decomposition of sulfur hexafluoride have been studied. It is shown that, in the gas-static operation mode of the radiator at the number of discharge pulses smaller than 103, the 193-nm ArF* and 249-nm KrF* bands are main in the emission spectrum. Upon further operation of the radiator, a spectral continuum is formed on the basis of sulfur molecular bands in the range 260–550 nm.  相似文献   
6.
Radiation of a nanosecond barrier discharge in a mixture of krypton, argon, and carbon-tetrachloride vapor is studied in the spectral range of 150–300 nm. The plasma radiation spectra and the dependences of the intensities of the 258 nm Cl2(D′ → A′), 222 nm KrCl(BX), and 175 nm ArCl(BX) bands on the partial pressure of liquid freon vapor, argon, and krypton, as well as on the discharge excitation conditions, are studied. The optimal compositions of gas mixtures for creating a broadband UV-VUV emitter based on the band system of argon chloride, krypton chloride, and chlorine molecule are determined.  相似文献   
7.
The spectrum of radiation and the results of optimization are presented for a UV lamp that works on the He-D2O mixture and is pumped using a repetitively pulsed barrier discharge. The dependences of the radiation intensity of the OD (X-A) band with the wavelength λ ≈ 309 nm on the partial pressure of the heavywater vapor, working voltage across the working capacitor of the high-voltage modulator, and repetition rate of the current pulses are studied.  相似文献   
8.
The emission characteristics of a pulse-periodic excilamp with three dielectric barriers based on the 222-nm KrCl(X-B) and 248-nm KrF(X-B) emission bands have been investigated. The working gases of the lamp were mixtures of krypton with low-aggressivity halogen carriers (SF6, CCl4). Optimal compositions of Kr-SF6 and Kr-CCl4 mixtures for obtaining the maximum intensity of the system of 222-nm KrCl(X-B) and 248-nm KrF(X-B) bands have been determined. The results of lamp optimization depending on the parameters of the source of pulse-periodic short-duration barrier discharge are presented.  相似文献   
9.
Shuaibov  A. K.  Gomoki  Z. T.  Minya  A. I.  Shevera  I. V.  Dzhupina  Ya. Yu. 《Technical Physics》2012,57(2):311-313
The characteristics of a pulsed-periodic short-barrier-discharge emitter operating at wavelength λ = 248 nm KrF(X-B) are investigated. The operating mixtures of the UV lamp are low-aggressive krypton-sulfur hexafluoride (SF6) mixtures at a total pressure in the range 1–50 kPa and a SF6 partial pressure of 0.1–0.4 kPa. The spectral characteristics of the plasma are studied, and the 248 nm KrF(X-B) band luminosity is optimized in terms of the operating mixture composition, pump voltage, and pulse repetition rate. The mean power of UV emission from the lateral surface of the cylindrical lamp is estimated.  相似文献   
10.
The subject of investigation is the emission properties of a pulsed-periodic barrier discharge initiated by submicrosecond pulses (f = 40–1000 Hz) in He-I2 and Ar-I2 mixtures. The investigation is carried out in the spectral range 200–400 nm at a pressure of the working medium of 1–100 kPa and an iodine partial pressure of 130–200 Pa. The dependence of UV emission from the plasma of the barrier discharge at the 342 nm I2(D′ → A′) band and the iodine atom spectral line at 206.2 nm on the argon and helium partial pressures, excitation pulses repetition rate, and charging voltage of the capacitor of a short high-voltage pulse modulator is optimized. The contribution of the 206.2 nm I* spectral line to the UV emission of the barrier discharge is estimated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号