首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
化学   22篇
物理学   4篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2010年   5篇
  2006年   1篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
2.
Polymers possess a very large inherent capacity for property modifications. The bridge between structure or morphology and mechanical properties is created by the micromechanical processes of deformation and fracture, the “micromechanics.” Developments mainly in electron microscopy (EM) (scanning, transmission, and high-voltage electron microscopy) and scanning force microscopy (SFM) opened up a wide range of experiments previously impossible, including the in situ study of micromechanical processes. These new techniques are reviewed and used to study micromechanical properties of amorphous and semi-crystalline polymers and several toughened polymers. On the basis of the detailed knowledge of micromechanical mechanisms, a new method of polymer modification becomes a realistic possibility, a method of micromechanical construction of new polymeric systems.  相似文献   
3.
A series of samples of polystyrene (PS) –polyethylene (PE) interpenetrating polymer network (IPN)–like system was prepared by synthesis in situ. The measurement of uniaxial compression modulus of the IPN samples was used for the determination of mean molar mass of the polymer chain between two junction points of the polymer network – M̌C. The electron microscopic records gave an evidence about two phase structure of the IPN samples. Generally, the crystalline part of PE network in all IPN investigated samples is relatively low. The influence of the concentration of crosslinking agent on mechanical behaviour of the IPN samples was studied.  相似文献   
4.
Crazes or craze-like deformation bands occur in many different polymers. Mechanisms of initiation and growth of the crazes have been studied using different techniques of electron microscopy. Examples of modifying amorphous and semi-crystalline polymers are given to demonstrate to which extent the macroscopic toughness of the polymers is affected by changes in the microscopic structure and by the amount of crazes.  相似文献   
5.
The orientation behavior of isotactic polypropylene (iPP) in α‐ and β‐crystal form was investigated by rheo‐optical Fourier transformed infrared (FTIR) spectroscopy. This method enabled quantification of the degree of orientation as a feature of structural changes during uniaxial elongation in not only the crystalline phase but also the amorphous one. Molecular orientation mechanisms can be successfully derived from experimental results. Generally, three mechanisms were detected for iPP: (1) interlamellar separation in the amorphous phase, (2) interlamellar slip and lamellar twisting at small elongations, and (3) intralamellar slip at high elongations. The third mechanism was favored by α‐PP, whereas β‐PP favored the second mechanism, which, in fact, was responsible for the different mechanical properties of both materials at the macroscopic level. On the other hand, crystallization conditions may have significantly affected the amorphous orientation. Nevertheless, for both iPP types the chains in the amorphous phase always oriented less than did those in the crystalline phase. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4478–4488, 2004  相似文献   
6.
The treatment of bone and cartilage defects with bioengineered constructs of artificial scaffolds and autogenous cells became the main challenge of contemporary regenerative medicine. Early defect repair may prevent secondary injury. Recent studies could prove that bone and cartilage cells are sensitive to microscale and nanoscale patterns of surface topography and chemical structure. Nanostructured materials provide an environment for tissue regeneration mimicking the physiological range of extracellular matrix. The article reviews several studies substantiating the superiority of nanostructured materials for bone and cartilage repair along with own results on cell attachment.  相似文献   
7.
Nanostructured polymers and ultra-thin polymer layers are used more and more in technical applications like nanotechnology and microelectronics. Therefore, it is really important to understand the size-scale dependent properties as bulk polymers become thinner and more two-dimensional. Here the morphology as well as the macroscopic and the microscopic deformation behaviour of multilayered films of polypropylene (PP) and polystyrene (PS) have been investigated. For investigation different microscopic techniques and tensile testing were used. The films were prepared by multilayer coextrusion, whereas the composition of PP and PS and the film thickness – and therefore the thickness of each layer – varied. The thinnest calculated thickness of a single layer was about 5 nm. It is shown that the PP/PS films consist usually of homogeneous layers with only few defects. As the composition of PP/PS deviates strongly from 50/50 or the films get thinner the number of defects increases and the layered system turns to irregular lamellar system. In macroscopic tensile tests the small PS layers affect the elongation at break enormously: Most of the samples are brittle. For the films with a composition of PP/PS 90/10 and the film PP/PS 70/30 with a film thickness of 25 µm an elongation at break of 66% and higher could be reached. Transmission electron microscopy on these samples shows that the layers are characterized by plastic yielding in local deformation zones.  相似文献   
8.
Summary: The micromechanical behaviour of various thermoplastics based nanocomposites was investigated with the aid of the microindentation technique. The materials studied were microphase separated styrene-butadiene block copolymer systems and several thermoplastics reinforced with nano-sized fillers having variable dimensionality. It was found that the microhardness behaviour of the nanocomposites studied was strongly influenced by the dimensionalities of the filler. Due to large surface to volume-ratio one- and two-dimensional fillers exhibit a far better reinforcing behaviour than the three dimensional ones. In case of nanostructured block copolymers, the microhardness is not determined by the total polystyrene (PS)/polybutadiene (PB) composition alone but diminishes gradually in presence of freely standing dangling polybutadiene chains even if the morphology of the systems remains unaltered.  相似文献   
9.
High-voltage electron microscopy was used to study the micromechanical processes of deformation directly on thin deformed samples of rubber-modified, high-impact polymers. In these polymers the microprocesses are closely connected with the initiation and formation of crazes. Craze formation with its effects on the fracture toughness are discussed in dependence on several important morphological factors, particularly on the rubber volume content, particle diameter, and particle diameter distribution.  相似文献   
10.
Summary: The mechanical deformation processes of poly(methyl methacrylate)/ montmorillonite nanocomposites and their electrospun fibers were investigated by in situ tensile tests under a transmission electron microscope depending on their morphology. While the polymer nanocomposites deformed in a brittle manner, i.e., crazing, the electrospun polymer nanocomposite fibers deformed through a shear flow process leading to “nanonecking” due to the strong overlap of stress fields caused by nanopores within the fiber under a uniaxial tensile load. This unique change in deformation behavior provides the possibility that the intrinsic brittle material could be manipulated to be ductile without sacrificing its other attractive properties through a well‐controlled electrospinning process.

TEM micrograph of a low temperature fractured fiber showing the nanoporous surface structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号