首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   4篇
化学   18篇
物理学   15篇
  2023年   1篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2016年   1篇
  2015年   3篇
  2013年   1篇
  2012年   2篇
  2011年   9篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Wild ginseng has better pharmacological effects than cultivated ginseng. However, its industrialization is limited by the inability to grow wild ginseng on a large scale. Herein, we demonstrate how to optimize ginseng production through cultivation, and how to enhance the concentrations of specific ginsenosides through fermentation. In the study, we also evaluated the ability of fermented cultured wild ginseng root extract (HLJG0701-β) to inhibit acetylcholinesterase (AChE), as well as its neuroprotective effects and antioxidant activity. In in vitro tests, HLJG0701-β inhibited AChE activity and exerted neuroprotective and antioxidant effects (showing increased catalyst activity but decreased reactive oxygen species concentration). In in vivo tests, after HLJG0701-β was orally administered at doses of 0, 125, 250, and 500 mg/kg in an animal model of memory impairment, behavioral evaluation (Morris water maze test and Y-maze task test) was performed. The levels of AChE, acetylcholine (ACh), blood catalase (CAT), and malondialdehyde (MDA) in brain tissues were measured. The results showed that HLJG0701-β produced the best results at a dose of 250 mg/kg or more. The neuroprotective mechanism of HLJG0701-β was determined to involve the inhibition of AChE activity and a decrease in oxidative stress. In summary, both in vitro and in vivo tests confirmed that HJG0701-β administration can lead to memory improvement.  相似文献   
2.
Miscued communication often leads to misfolding and aggregation of the proteins involved in many diseases. Owing to the ensemble average property of conventional techniques, detailed communication diagrams are difficult to obtain. Mechanical unfolding affords an unprecedented perspective on cooperative transitions by observing a protein along a trajectory defined by two mutated cysteine residues. Nevertheless, this approach requires tedious sample preparation at the risk of altering native protein conformations. To address these issues, we applied click chemistry to tether a protein to the two dsDNA handles through primary amines in lysine residues as well as at the N terminus. As a proof of concept, we used laser tweezers to mechanically unfold and refold calmodulin along 36 trajectories, maximally allowed by this strategy in a single batch of protein preparation. Without a priori knowledge of the particular residues to which the double‐stranded DNA handles attach, we used hierarchical cluster analysis to identify 20 major trajectories, according to the size and the pattern of unfolding transitions. We dissected the cooperativity into all‐or‐none and partially cooperative events, which represent strong and weak high‐order interactions in proteins, respectively. Although the overall cooperativity is higher within the N or C lobe than that between the lobes, the all‐or‐none cooperativity is anisotropic among different the unfolding trajectories and becomes relatively more predominant when the size of the protein segments increases. The average cooperativity for all‐or‐none transitions falls within the expected range observed by ensemble techniques, which supports the hypothesis that unfolding of a free protein can be reconstituted from individual trajectories.  相似文献   
3.
4.
Ultrafast laser excitation of an InGaAs/InAlAs superlattice (SL) creates coherent folded acoustic phonons that subsequently leak into the bulk (InP) substrate. Upon transmission, the phonons become "unfolded" into bulk modes and acquire a wave vector much larger than that of the light. We show that time-resolved x-ray diffraction is sensitive to this large-wave vector excitation in the substrate. Comparison with dynamical diffraction simulations of propagating strain supports our interpretation.  相似文献   
5.
We present here the results of the calculations of photofield emission current by using the free electron model in which the appropriate wavefunctions are used. The transmission probability had been calculated by solving the Airy’s equation. The model developed is used to calculate photofield emission current from tungsten.  相似文献   
6.
Light is a key factor that affects phytochemical synthesis and accumulation in plants. Due to limitations of the environment or cultivated land, there is an urgent need to develop indoor cultivation systems to obtain higher yields with increased phytochemical concentrations using convenient light sources. Light-emitting diodes (LEDs) have several advantages, including consumption of lesser power, longer half-life, higher efficacy, and wider variation in the spectral wavelength than traditional light sources; therefore, these devices are preferred for in vitro culture and indoor plant growth. Moreover, LED irradiation of seedlings enhances plant biomass, nutrient and secondary metabolite levels, and antioxidant properties. Specifically, red and blue LED irradiation exerts strong effects on photosynthesis, stomatal functioning, phototropism, photomorphogenesis, and photosynthetic pigment levels. Additionally, ex vitro plantlet development and acclimatization can be enhanced by regulating the spectral properties of LEDs. Applying an appropriate LED spectral wavelength significantly increases antioxidant enzyme activity in plants, thereby enhancing the cell defense system and providing protection from oxidative damage. Since different plant species respond differently to lighting in the cultivation environment, it is necessary to evaluate specific wavebands before large-scale LED application for controlled in vitro plant growth. This review focuses on the most recent advances and applications of LEDs for in vitro culture organogenesis. The mechanisms underlying the production of different phytochemicals, including phenolics, flavonoids, carotenoids, anthocyanins, and antioxidant enzymes, have also been discussed.  相似文献   
7.
We report time-resolved electroabsorption of a weak probe in a 500 μm thick zinc-oxide crystal in the presence of a strong midinfrared pump in the tunneling limit. We observe a substantial redshift in the absorption edge that scales with the cube root of intensity up to 1 TW/cm(2) (0.38 eV cm(2/3) TW(-1/3)) after which it increases more slowly to 0.4 eV at a maximum applied intensity of 5 TW/cm(2). The maximum shift corresponds to more than 10% of the band gap. The change in scaling occurs in a regime of nonperturbative high-order harmonic generation where electrons undergo periodic Bragg scattering from the Brillouin zone boundaries. It also coincides with the limit where the electric field becomes comparable to the ratio of the band gap to the lattice spacing.  相似文献   
8.
We present Kapitza conductance measurements of the bismuth/sapphire interface using depth- and time-resolved X-ray diffraction, for Bi film thicknesses ranging from 65 to 284 nm. Our measurements provide complementary information about heat transport in the films; we directly observe the thinnest film to be uniformly heated within 1 ns, whereas the thickest film sustains a large near-surface temperature gradient for several ns. The deduced Kapitza conductance is 1950 W/cm2/K. This value is close to the theoretical prediction using the radiation limit.  相似文献   
9.
The electronic density of states (DOS) and magnetic moments of rare-earth antimonides (RCrSb3) have been studied by the first principles full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). For the exchange-correlation potential, the LSDA+U method is used. The effective moments of LaCrSb3, CeCrSb3, NdCrSb3, GdCrSb3, and DyCrSb3 were found to be , , , and respectively. The exchange-splittings of Cr-3d state electrons and 4f-states of rare earth elements were analyzed to explain the magnetic nature of these systems. The Cr atom plays a significant role on the magnetic properties due to the hybridization between Cr-3d and Sb-5p state orbitals. The results obtained are compared and found to be in close agreement with the available data.  相似文献   
10.
The density of states (DOS) and the magnetic moments of SmCrSb3 and GdCrSb3 have been studied by first principles full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). For the exchange-correlation potential, the local-spin density approximations with correlation energy (LSDA+U) method have been used. Total and partial DOS have been computed using the WIEN2k code. DOS result shows the exchange-splittings of Cr-3d and rare-earth (R) 4f states electrons, which are responsible for the ground state ferromagnetic (FM) behavior of the systems. The FM behavior of these systems is strongly influenced by the average number of Cr-3d and Sm (Gd) 4f-electrons. The effective moment of SmCrSb3 is found to be 7.07 μB while for GdCrSb3 it is 8.27 μB. The Cr atom plays a significant role on the magnetic properties due to the hybridization between Cr-3d and Sb-5p states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号