首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
化学   14篇
力学   1篇
数学   1篇
物理学   12篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2011年   1篇
  2010年   2篇
  2006年   2篇
  2002年   1篇
  1999年   2篇
  1997年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有28条查询结果,搜索用时 0 毫秒
1.
The crystal structure of V0.985Al0.015O2 has been refined from single-crystal X-ray data at four temperatures. At 373°K it has the tetragonal rutile structure. At 323°K, which is below the first metal-insulator transition, it has the monoclinic M2 structure, where half of the vanadium atoms are paired with alternating short (2.540 Å) and long (3.261 Å) V-V separations. The other half of the vanadium atoms form equally spaced (2.935 Å) zigzag V chains. At 298°K, which is below the second electric and magnetic transition, V0.985Al0.015O2 has the triclinic T structure where both vanadium chains contain V-V bonds, V(1)-V(1) = 2.547 Å and V(2)-V(2) = 2.819 Å. At 173°K the pairing of the V(1) chain remains constant: V(1)-V(1) = 2.545 Å, whereas that of the V(2) chain decreases: V(2)-V(2) = 2.747 Å. From the variation of the lattice parameters as a function of temperature it seems that these two short V-V distances will not become equal at lower temperatures. The effective charges as calculated from the bond strengths at 298 and 173°K show that a cation disproportionation has taken place between these two temperatures. About 20% of the V4+ cations of the V(1) chains have become V3+ and correspondingly 20% of the V4+ cations of the V(2) chains have become V5+. This disproportionation process would explain the difference between the two short V-V distances. Also it would explain why the TM1 transition does not take at lower temperatures.  相似文献   
2.
Single crystals of K0.30MoO3 and Rb0.30MoO3 were synthesized by electrolytic reduction of MoO3/ A2MoO4 melts. The crystal structures were refined from X-ray diffraction data (3265 and 1280 independent reflections, respectively). The finalR andwR factors were 0.037 and 0.047 for the K bronze and 0.031 and 0.033 for the Rb bronze. The lattice parameters of the body-centered cells used in the present refinements were: K0.30Mo03,a = 16.2311(7),b = 7.5502(4),c = 9.8614(4)A?,β = 94.895(4)o; Rb0.30MoO3,a = 16.361(3),b = 7.555(1),c = 10.094(2)A?,β = 93.87(5)o. The 4d electron distribution over the 20 Mo sites [4Mo(1), 8Mo(2), 8Mo(3)] of the unit cell are 10, 45, and 45% for K0.30Mo03 and 14, 43, and 43% for Rb0.30MoO3, respectively. In both cases about 90% of the 4d electrons are situated on those sites which contribute to the electrical conductivity. The variations of the lattice parameters versus temperature are reported. The thermal linear-expansion coefficient is highly anisotropic. The structural dimensionality depends upon the sublattice under consideration. The K, Mo, and O sublattices are mono-, two-, and three-dimensional, respectively. The relationship between the structural dimensionality of K0.30MoO3 and the physical properties is discussed.  相似文献   
3.
Fast atom bombardment, combined with high-energy collision-induced tandem mass spectrometry, has been used to investigate gas-phase metal-ion interactions with captopril, enalaprilat and lisinopril, all angiotensin-converting enzyme inhibitors.Suggestions for the location of metal-binding sites are presented. For captopril, metal binding occurs most likely at both the sulphur and the nitrogen atom. For enalaprilat and lisinopril, binding preferably occurs at the amine nitrogen. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
4.
The paper evaluates the optimal design of the low-doped base region inside power diodes and other bipolar devices. It is demonstrated theoretically that a low-doped base region of P+NN+ diodes can provide a high breakdown voltage and an optimal on-resistance . A simple, accurate and CPU timesaving approach is presented to extract an optimal value for the base region width, WB, and its doping concentration, ND. The paper details an analytical relation between WB and ND, and gives a method for quantifying the trade-off between their values for a given breakdown voltage and for obtaining the minimal on-resistance. Analytical results are confronted with experimental results for 4H-SiC- and 6H-SiC-based diodes.  相似文献   
5.
Electrospray mass spectrometry/mass spectrometry was used to investigate the gas‐phase properties of protonated expanded porphyrins, in order to correlate those with their structure and conformation. We have selected five expanded meso‐pentafluorophenyl porphyrins, respectively, a pair of oxidized/reduced fused pentaphyrins (22 and 24 π electrons), a pair of oxidized/reduced regular hexaphyrins (26 and 28 π electrons) and a regular doubly N‐fused hexaphyrin (28 π electrons). The gas‐phase behavior of the protonated species of oxidized and reduced expanded porphyrins is different. The oxidized species (aromatic Hückel systems) fragment more extensively, mainly by the loss of two HF molecules. The reduced species (Möbius aromatic or Möbius‐like aromatic systems) fragment less than their oxidized counterparts because of their increased flexibility. The protonated regular doubly fused hexaphyrin (non‐aromatic Hückel system) shows the least fragmentation even at higher collision energies. In general, cyclization through losses of HF molecules decreases from the aromatic Hückel systems to Möbius aromatic or Möbius‐like aromatic systems to non‐aromatic Hückel systems and is related to an increase in conformational distortion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
6.
7.
8.
Snake venom contains a number of active molecules that have been shown to possess high anti-tumor activities; disintegrins are an excellent example among these. Their ability to interact and bind with integrins suggests that they could be very valuable molecules for the development of new cancer therapeutic approaches. However, in the absence of a clear Lysine-Threonine-Serine (KTS) Disintegrins Integrin interaction model, the exact compound features behind it are still unknown. In this study, we investigated the structural characteristics of three KTS-disintegrins and the interaction mechanisms with the α1β1 integrin receptor using in silico bioinformatics approaches. Normal mode analysis showed that the flexibility of the KTSR motif and the C-terminal region play a key role and influence the KTS-Disintegrin-integrin interaction. Protein-protein docking also suggested that the interaction involving the KTSR motif is highly dependent on the residue following K21, S23 and R24. These findings contribute to a better understanding of the KTS-Disintegrin-Integrin structural differences and their interactions with α1β1 receptors, which could improve the selection process of the best active molecules for antitumor therapies.  相似文献   
9.
Using a novel differential magneto-optical imaging technique we investigate the phenomenon of vortex lattice melting in crystals of Bi2Sr2CaCu2O8 (BSCCO). The images of melting reveal complex patterns in the formation and evolution of the vortex solid-liquid interface with varying field (H)/temperature (T). We believe that the complex melting patterns are due to a random distribution of material disorder/inhomogeneities across the sample, which create fluctuations in the local melting temperature or field value. To study the fluctuations in the local melting temperature/field, we have constructed maps of the melting landscape T m(H, r), viz., the melting temperature (T m) at a given location (r) in the sample at a given field (H). A study of these melting landscapes reveals an unexpected feature: the melting landscape is not fixed, but changes rather dramatically with varying field and temperature along the melting line. It is concluded that the changes in both the scale and shape of the landscape result from the competing contributions of different types of quenched disorder which have opposite effects on the local melting transition.  相似文献   
10.
This is a continuation of our earlier investigation (Gurtuet al 1974Phys. Lett. 50 B 391) on multiparticle production in proton-nucleus collisions based on an exposure of emulsion stack to 200 GeV/c beam at the NAL. It is found that the ratioR em = 〈n s〉/〈n ch〉, where 〈n ch〉 is the charged particle multiplicity in pp-collisions, increases slowly from about 1 at 10 GeV/c to 1·6 at 68 GeV/c and attains a constant value of 1·71 ± 0·04 in the region 200 to 8000 GeV/c. Furthermore,R em = 1·71 implies an effectiveA-dependence ofR A =A 0.18,i.e., a very weak dependence. Predictions ofR em on various models are discussed and compared with the emulsion data. Data seem to favour models of hadron-nucleon collisions in which production of particles takes place through adouble step mechanism,e.g., diffractive excitation, hydrodynamical and energy flux cascade as opposed to models which envisage instantaneous production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号