首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   2篇
化学   7篇
数学   1篇
物理学   16篇
  2015年   2篇
  2012年   1篇
  2010年   1篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有24条查询结果,搜索用时 46 毫秒
1.
2.
The x-ray diffraction intensities of Bragg reflections have been measured at room temperature for thulium selenide, samarium sulphide, samarium selenide and samarium telluride. On the basis of a common amplitude approximation, the Debye-Waller factor, the mean amplitude of vibration and the Debye temperature have been evaluated. The values of the Debye temperatures and mean amplitudes of vibration are 176±16°K, 0·185 ± 0·017 Å (TmSe), 155 ± 7°K, 0·244 ± 0·012 Å (SmS), 153 ± 14°K, 0·221 ± 0·020 Å (SmSe) and 151 ± 20°K, 0·204 ± 0·027 Å (SmTe).  相似文献   
3.
The nucleation pathway for single-wall carbon nanotubes on a metal surface is demonstrated by a series of total energy calculations using density functional theory. Incorporation of pentagons at an early stage of nucleation is energetically favorable as they reduce the number of dangling bonds and facilitate curvature of the structure and bonding to the metal. In the presence of the metal surface, nucleation of a closed cap or a capped single-wall carbon nanotube is overwhelmingly favored compared to any structure with dangling bonds or to a fullerene.  相似文献   
4.
Characterizing and controlling the interlayer orientations and stacking orders of two‐dimensional (2D) bilayer crystals and van der Waals (vdW) heterostructures is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) crystals that result from different layer stackings provide an ideal platform to study the stacking configurations in 2D bilayer crystals. Through a controllable vapor‐phase deposition method, bilayer GaSe crystals were selectively grown and their two preferred 0° or 60° interlayer rotations were investigated. The commensurate stacking configurations (AA′ and AB stacking) in as‐grown bilayer GaSe crystals are clearly observed at the atomic scale, and the Ga‐terminated edge structure was identified using scanning transmission electron microscopy. Theoretical analysis reveals that the energies of the interlayer coupling are responsible for the preferred orientations among the bilayer GaSe crystals.  相似文献   
5.
The key spatial and temporal scales for single-wall carbon nanotube (SWNT) synthesis by laser vaporization at high temperatures are investigated with laser-induced luminescence imaging and spectroscopy. Graphite/(Ni, Co) targets are ablated under typical synthesis conditions with a Nd:YAG laser at 1000 °C in a 2-in. quartz tube reactor in flowing 500-Torr Ar. The plume of ejected material is followed for several seconds after ablation using combined imaging and spectroscopy of Co atoms, C2 and C3 molecules, and clusters. The ablation plume expands in stages during the first 200 7s after ablation and displays a self-focusing behavior. Interaction of the plume with the background gas forms a vortex ring which segregates and confines the vaporized material within a ~1-cm3 volume for several seconds. Using time-resolved spectroscopy and spectroscopic imaging, the time for conversion of atomic and molecular species to clusters was measured for both carbon (200 7s) and cobalt (2 ms) at 1000 °C. This rapid conversion of carbon to nanoparticles, combined with transmission electron microscopy analysis of the collected deposits, indicate that nanotube growth occurs over several seconds in a plume of mixed nanoparticles. By adjusting the time spent by the plume within the high-temperature zone using these in situ diagnostics, single-walled nanotubes of controlled (~100 nm) length were grown and the first estimate of a growth rate on single laser shots (0.2 7m/s) was obtained.  相似文献   
6.
7.
As the silicon industry continues to push the limits of device dimensions, tools such as Raman spectroscopy are ideal to analyze and characterize the doped silicon channels. The effect of inter‐valence band transitions on the zone center optical phonon in heavily p‐type doped silicon is studied by Raman spectroscopy for a wide range of excitation wavelengths extending from the red (632.8 nm) into the ultra‐violet (325 nm). The asymmetry in the one‐phonon Raman lineshape is attributed to a Fano interference involving the overlap of a continuum of electronic excitations with a discrete phonon state. We identify a transition above and below the one‐dimensional critical point (E = 3.4 eV) in the electronic excitation spectrum of silicon. The relationship between the anisotropic silicon band structure and the penetration depth is discussed in the context of possible device applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
8.
A rigorous investigation of the identification of a heterogeneousflexural rigidity coefficient in the Euler-Bernoulli steady-statebeam theory in the presence of a prescribed load is presented.Mathematically, this study is an extension to higher-order differentialequations of the coefficient identification problem analysedby Marcellini (1982) for the one-dimensional Poisson equation.In addition, various types of boundary conditions are discussed.Conditions for the well-posedness of these inverse problemsare established and, furthermore, numerical results obtainedusing a regularization algorithm are presented.  相似文献   
9.
The sensitivity of all ion trap mass spectrometry (ITMS) methods is dependent on the trapping efficiency of the instrument. For ITMS instruments utilizing external ion sources, such as laser desorption, trapping efficiency is known to depend on the phase and amplitude of the radio frequency (RF) potential applied to the ring electrode at the time of ion introduction. It is remarkable that, in a considerable body of literature, no consensus exists regarding the effects of these parameters on the efficacy of trapping externally generated ions. In this paper, a summary of the literature is presented in order to highlight significant discrepancies. New laser desorption ion trap mass spectrometry (LD-ITMS) data are also presented, from which conclusions are drawn in our effort to clarify some of the confusion. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
10.
Direct measurements of carbon nanotube growth kinetics are described based upon time-resolved reflectivity (TRR) of a HeNe laser beam from vertically aligned nanotube arrays (VANTAs) as they grow during chemical vapor deposition (CVD). Growth rates and terminal lengths were measured in situ for VANTAs growing during CVD between 535 °C and 900 °C on Si substrates with evaporated Al/Fe/Mo multi-layered catalysts and acetylene feedstock at different feedstock partial pressures. Methods of analysis of the TRR signals are presented to interpret catalyst particle formation and oxidation, as well as the porosity of the VANTAs. A rate-equation model is developed to describe the measured kinetics in terms of activation energies and rate constants for surface carbon formation and diffusion on the catalyst nanoparticle, nanotube growth, and catalyst over-coating. Taken together with the TRR data, this model enables basic understanding and optimization of growth conditions for any catalyst/feedstock combination. The model lends insight into the main processes responsible for the growth of VANTAs, the measured number of walls in the nanotubes at different temperatures, conditions for growth of single-wall carbon nanotube arrays, and likely catalyst poisoning mechanisms responsible for the sharp decline in growth rates observed at high temperatures. PACS  61.46.+w; 81.07.De; 81.16.Hc  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号