首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
物理学   1篇
  1996年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
The purpose of this investigation was to correlate magnetic resonance (MR) perfusion measurements with absolute regional cerebral blood flow (rCBF) in a rat model of focal ischemia. The MR perfusion measurements were made using dynamic first-pass bolus tracking of a susceptibility contrast agent, whereas rCBF was measured using radioactive microspheres. Two simple MR perfusion parameters, the maximum change in ( ) and time delay to ( ), were derived from the signal intensity versus time curves on a pixel-to-pixel basis, without applying curve-fitting procedures or tracer kinetic theory. In each hemisphere, and were compared with the rCBF measurements in four selected regions of interest. Sixteen MR bolus tracking series were performed in 12 rats with occlusion of the middle cerebral artery. In all of the individual series there was a significant correlation (.0001 ≤ p ≤ .02) between and the microsphere rCBF measurements, with correlation coefficients ranging from .784 to .983. Pooling the data resulted in a correlation coefficient of .809 (p = .0001). There was a nonlinear correlation between the and rCBF. For both parameters there was considerable variation between different measurements regarding both the slope of the regression line and its intercept with the y-axis. Our results justify the use of as a relative measure of perfusion during acute cerebral ischemia. Because of the interindividual variation, calibration of MR perfusion measurements for the estimation of absolute flow values must be considered unreliable. The may have physiological relevance as a marker of collateral flow.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号