首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
化学   4篇
数学   1篇
物理学   14篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2009年   2篇
  2007年   1篇
  2003年   1篇
  2000年   2篇
  1999年   1篇
  1974年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
2.
We study an experimental setup in which a quantum probe, provided by a quasimonomode guided atom laser, interacts with a static localized attractive potential whose characteristic parameters are tunable. In this system, classical mechanics predicts a transition from regular to chaotic behavior as a result of the coupling between the different degrees of freedom. Our experimental results display a clear signature of this transition. On the basis of extensive numerical simulations, we discuss the quantum versus classical physics predictions in this context. This system opens new possibilities for investigating quantum scattering, provides a new testing ground for classical and quantum chaos, and enables us to revisit the quantum-classical correspondence.  相似文献   
3.
We study experimentally and theoretically a beam splitter setup for guided atomic matter waves. The matter wave is a guided atom laser that can be tuned from quasimonomode to a regime where many transverse modes are populated, and propagates in a horizontal dipole beam until it crosses another horizontal beam at 45°. We show that depending on the parameters of this X configuration, the atoms can all end up in one of the two beams (the system behaves as a perfect guide switch), or be split between the four available channels (the system behaves as a beam splitter). The splitting regime results from a chaotic scattering dynamics. The existence of these different regimes turns out to be robust against small variations of the parameters of the system. From numerical studies, we also propose a scheme that provides a robust and controlled beam splitter in two channels only.  相似文献   
4.
5.
This is a continuation of our earlier investigation (Gurtuet al 1974Phys. Lett. 50 B 391) on multiparticle production in proton-nucleus collisions based on an exposure of emulsion stack to 200 GeV/c beam at the NAL. It is found that the ratioR em = 〈n s〉/〈n ch〉, where 〈n ch〉 is the charged particle multiplicity in pp-collisions, increases slowly from about 1 at 10 GeV/c to 1·6 at 68 GeV/c and attains a constant value of 1·71 ± 0·04 in the region 200 to 8000 GeV/c. Furthermore,R em = 1·71 implies an effectiveA-dependence ofR A =A 0.18,i.e., a very weak dependence. Predictions ofR em on various models are discussed and compared with the emulsion data. Data seem to favour models of hadron-nucleon collisions in which production of particles takes place through adouble step mechanism,e.g., diffractive excitation, hydrodynamical and energy flux cascade as opposed to models which envisage instantaneous production.  相似文献   
6.
The structure of few-fermion systems having \({1/2}\) spin-isospin symmetry is studied using potential models. The strength and range of the two-body potentials are fixed to describe low energy observables in the angular momentum \({L=0}\) state and spin \({S=0,1}\) channels of the two-body system. Successively the strength of the potentials are varied in order to explore energy regions in which the two-body scattering lengths are close to the unitary limit. This study is motivated by the fact that in the nuclear system the singlet and triplet scattering lengths are both large with respect to the range of the interaction. Accordingly we expect evidence of universal behavior in the three- and four-nucleon systems that can be observed from the study of correlations between observables. In particular we concentrate in the behavior of the first excited state of the three-nucleon system as the system moves away from the unitary limit. We also analyze the dependence on the range of the three-body force of some low-energy observables in the three- and four-nucleon systems.  相似文献   
7.
We study small clusters of bosons, A = 2, 3, 4, 5, 6, characterized by a resonant interaction. Firstly, we use a soft-gaussian interaction that reproduces the values of the dimer binding energy and the atom-atom scattering length obtained with LM2M2 potential, a widely used 4He-4He interaction. We change the intensity of the potential to explore the clusters’ spectra in different regions with large positive and large negative values of the two-body scattering length and we report the clusters’ energies on Efimov plot, which makes the scale invariance explicit. Secondly, we repeat our calculation adding a repulsive three-body force to reproduce the trimer binding energy. In all the region explored, we have found that these systems present two states, one deep and one shallow close to the A ? 1 threshold, and scale invariance has been investigated for these states. The calculations are performed by means of Hyperspherical Harmonics basis set.  相似文献   
8.
9.
We propose to use the hyperspherical harmonics (HH) basis to solve the A-body system problem without explicit symmetrization or anti-symmetrization of the basis functions as required by the statistic of the system. Therefore, the HH basis set is expressed with respect to a given ordering of the A particles. However, after diagonalization, the eigenvectors reflect the symmetries of the Hamiltonian, and it is possible to identify the physical states having the expected symmetry under particle permutation. As an example we study the case of four particles interacting through a short-range spin-dependent interaction and the Coulomb potential.  相似文献   
10.
We present an experimental study of nonlinear lensing of near-resonant light by a cloud of laser-cooled rubidium atoms, specifically aimed at understanding the role of the interaction time between the light and the atomic vapor. We identify four different nonlinear mechanisms, each associated with a different time constant: electronic nonlinearity, Zeeman optical pumping, hyperfine optical pumping and radiation pressure. Our observations can be quite accurately reproduced using a simple rate equation model which allows for a straightforward discussion of the various effects. The results are important for planning more refined experiments on transverse nonlinear optics and self-organization in samples of cold atoms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号