首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   1篇
化学   42篇
力学   1篇
物理学   10篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   7篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1973年   1篇
  1970年   1篇
  1957年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
Three types of flavylium salts (FVs, yellow, green and red) have been synthesized and the colors depended on recrystallization conditions. The existence of these color states was confirmed by diffuse reflectance spectra. The spectra were almost the same as the absorption spectra in ethanol solution. The molecular state of FVs in crystals will be the same as that in solutions. The crystal colors of the FVs are controlled by the recrystallization conditions.  相似文献   
2.
Electronic structures and spectra of Hafner's hydrocarbons have been calculated by means of the semi-empirical SCF CI MO method incorporated with the variable bond-length technique. The results are in good agreement with experimental data.  相似文献   
3.
We have studied the magnetic field effects (MFEs) on the charge-transfer fluorescence and transient photocurrent of a 1,2,4,5-tetracyanobenzene-doped poly(N-vinylcarbazole) film, which reflect the recombination and escape yields of the carriers, respectively. The recombination yield dependence of the external magnetic field (B) clearly shows two types of the MFEs, growth with increasing B due to the hyperfine mechanism (HFM) and a negative dip due to the level-crossing mechanism (LCM). On the other hand, the escape yield indicates complementary MFEs with a sharp decrease in yield with increasing B and then a positive dip. Simultaneous observation of the HFM- and LCM-MFEs proves the stepwise hole-hopping mechanism rather the long-range hole-jumping one. The quantitative analysis of the recombination and escape MFEs is performed using the stochastic Liouville equations (SLE) for a one-dimensional lattice model in which the stepwise hole hops take place between the nearest neighbor carbazole units with spin conservation. The SLE analysis provides the recombination and hole transfer rate constants of 7.0 x 10(7) and 4.5 x 10(8) s(-1), respectively. The boundary site number for the ion pairs in the one-dimensional model is estimated by the best fit to the experimental results. The interionic distance of the boundary ion pair in the one-dimensional model including eight sites agrees with the thermalization distance in the Onsager model. Hence, it is concluded that the elementary processes in the Onsager model applied to molecular amorphous solids are the stepwise hole hops rather than a long-range hole jump.  相似文献   
4.
Membrane domains contribute important structural and functional attributes to biological membranes. We describe the heterogeneous nanoscale distribution of lipid molecules within microscale membrane domains in multicomponent lipid bilayers composed of dipalmitoylphosphatidylcholine (DPPC), dilauroylphosphatidylcholine (DLPC), and cholesterol (chol). The lipids were labeled with the fluorescent lipid analogues Bodipy-PC and DiI-C20:0 to identify the distribution of individual membrane components. We used a near-field scanning optical microscope (NSOM) at room temperature to identify the nanoscale structures in the membrane. Simultaneous multicolor NSOM imaging at the emission maxima of the fluorescent analogues revealed a patchy distribution of Bodipy-PC and DiI-C20:0 indicative of phase separations in the bilayer. In a cholesterol-free system (DPPC/DLPC = 1:1), NSOM images proved that the two phosphatidylcholine molecules can coexist in domains at the micrometer level but form nanoscopic patches within the domains; DPPC occurs at the edge of the domains, whereas DLPC is present throughout the domains. In the presence of cholesterol (DPPC/DLPC = 7:3, chol = 18.9%), the two lipid molecules were more miscible but incomplete phase separations also occurred. The average domain sizes were 140-200 nm, well below the resolution capabilities of diffraction-limited light microscopy techniques; the domains were unresolvable by confocal microscopy. Our high-resolution NSOM studies of membrane domain behavior provide a better understanding of complex membrane phase phenomena in multicomponent biological membranes.  相似文献   
5.
Photodissociation of the carbon-X (X = Br and Cl) bonds in p-bromo- and p-chloromethylbenzophenone (BMBP and CMBP) in solution were investigated by time-resolved EPR and laser flash photolysis techniques. BMBP and CMBP were found to undergo ω-bond cleavage to yield the p-benzoylbenzyl radical (BBR) at 295 K, and the quantum yields (ΦBBR) were determined. The CIDEP signal originated from BBR formed upon decomposition of CMBP was obtained while that for BMBP was absent. By using triplet sensitization of acetone, the efficiencies (BBR) of the CX bond fission in the triplet states of BMBP and CMBP were determined. The agreement between the ΦBBR and BBR values for CMBP indicates that the CCl bond dissociation occurs only in the triplet state. In contrast to CMBP, the cleavage of the CBr bond in BMBP upon direct excitation was concluded to be the event only in the excited singlet state without triplet formation, whereas the triplet state was also reactive for ω-bond dissociation. The rate of CBr bond dissociation seemed to be greater than that of intersystem crossing from the S1 to the T1 state. Schematic energy diagrams of the excited states of BMBP and CMBP were shown, and the reaction profiles were discussed from the viewpoint of the CX bond enthalpies.  相似文献   
6.
The excitation-energy-hopping (EEH) times within two-dimensional cyclic zinc(II)-porphyrin arrays 5 and 6, which were prepared by intermolecular coordination and ring-closing metathesis reaction of olefins, were deduced by modeling the EEH process based on the anisotropy depolarization as well as the exciton-exciton annihilation dynamics. Assuming the number of energy-hopping sites N = 5 and 6, the two different experimental observables, that is, anisotropy depolarization and exciton-excition annihilation times, consistently give the EEH times of 8.0 +/- 0.5 and 5.3 +/- 0.6 ps through the 1,3-phenylene linkages of 5 and 6, respectively. Accordingly, the self-assembled cyclic porphyrin arrays have proven to be well-defined two-dimensional models for natural light-harvesting complexes.  相似文献   
7.
Magnetic field effects on the charge-transfer (CT) fluorescence of a 1,2,4,5-tetracyanobenzene-doped poly(N-vinylcarbazole) thin film were investigated to clarify the primary process in photoconductive organic amorphous solid. The CT fluorescence increased with increasing magnetic field until 10 mT, and then it showed the dip around 40-50 mT. The hyperfine coupling mechanism observed in the low field and the level-crossing mechanism observed around 46 mT clearly indicate that the spin-conservative stepwise hole hops take place in the films. The boundary distance determined from the simulation based on the stepwise hopping model almost agreed with the interionic separation estimated within the Onsager analysis.  相似文献   
8.
The common left-half [C31-C33(OC1-C7)-C40] part of pectenotoxins has been synthesized convergently from the C31-C35, C36-C40, and C1-C7 parts. The C31-C35 part, prepared via a new route shorter than our previous route, was coupled with the C36-C40 part through reductive lithiation and addition reactions to give an adduct stereoselectively, which was converted to a cyclic acetal corresponding to the C31-C40 part. The left-half was synthesized by a three-step process including esterification of the C31-C40 part with the C1-C7 part.  相似文献   
9.
Crystallization of organic molecules is quite complicated because the crystallization process is governed by weak intermolecular interactions. By exploiting aggregation‐induced emission (AIE), we attempted to realize the selective detection of phase transformation during the evaporative crystallization of hexaphenylsilole (HPS), which shows different fluorescent colors in the amorphous and crystalline phases. No fluorescence emission was observed in the HPS solution immediately after dropping on the glass substrate due to the non‐radiative deactivation induced by intramolecular rotational or vibrational motion, suggesting that HPS exists as a monomer in solution. As time elapsed after dropping, green emission first appeared, which changed to blue after solvent evaporation, because of phase transformation from the amorphous state to the crystalline state. This phenomenon supports not only the two‐step nucleation model involving an intermediate such as a liquid‐like cluster prior to nucleation but also the real‐time detection of Ostwald's rule of stages during evaporative crystallization.  相似文献   
10.
Photoinduced electron transfer (ET) and excitation energy transfer (ENT) reactions in monomer and slipped-cofacial dimer systems of a directly linked Zn porphyrin (Por)-Zn phthalocyanine (Pc) heterodyad, ZnPc-ZnPor, were investigated by means of the picosecond and femtosecond transient absorption spectroscopies. In the dimer dyad system of two heterodyads connected through the coordination bond between two imidazolyl-substituted ZnPor bearing ZnPc, ZnPc-ZnPor(D), the rapid ENT from the ZnPor to ZnPc in the subpicosecond time region was followed by photoinduced charge separation (CS) and charge recombination (CR) with time constants of 47 and 510 ps, respectively. On the other hand in the monomer dyad system, no clear charge-separated state was observed although the CS with a time constant of 200 ps and CR with < or =70 ps were estimated. These results indicated that the dimer slipped-cofacial arrangement of pair porphyrins is advantageous for the effective production of the CS state. This advantage was discussed from the viewpoint of a decrease in the reorganization energy of the dimer relative to that of the monomer system. In addition, the electrochemical measurements indicated that the strong interaction between ZnPc and ZnPor moieties also contributed to the fast CS process despite the marginal driving force for the CS process. The dimer dyad of ZnPc-ZnPor provides full advantages in efficiencies of the light harvesting and the CS state production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号