首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   6篇
物理学   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
Efficient methods for the synthesis of fused-aromatic rings is a critical endeavour in the creation of new pharmaceuticals and materials. A direct method for preparing these systems is the tetradehydro-Diels–Alder reaction, however this is limited by the need for harsh reaction conditions. A potential, but underdeveloped, route to these systems is via transition metal-catalysed cycloaromatisation of ene-diynes. Herein, tethered unconjugated enediynes have been shown to undergo a facile room-temperature RhI-catalysed intramolecular tetradehydro-Diels–Alder reaction to produce highly substituted isobenzofurans, isoindolines and an indane. Furthermore, experimental and computational studies suggest a novel mechanism involving an unprecedented and complex RhI/RhIII/RhI/RhIII redox cycle involving the formation of an unusual strained 7-membered rhodacyclic allene intermediate and a RhIII-stabilized 6-membered ring allene complex.

Room temperature Rh-catalysed tetradehydro-Diels–Alder reaction via an unusual Rh-stabilised allene.  相似文献   
2.
An efficient and mild reaction protocol for the decarbonylation of isocyanates has been developed using catalytic amounts of Lewis acidic boranes. The electronic nature (electron withdrawing, electron neutral, and electron donating) and the position of the substituents (ortho/meta/para) bound to isocyanate controls the chain length and composition of the products formed in the reaction. Detailed DFT studies were undertaken to account for the formation of the mono/di-carboxamidation products and benzoxazolone compounds.  相似文献   
3.
A simple gold-catalyzed annulation of 1,8-dialkynylnaphthalenes utilizing a cationic gold catalyst was developed. Such a peri-position of two alkynyl substituents has not been studied in gold catalysis before. Dependent on the substrate, the reactions either follow a mechanism involving vinyl cation intermediates or involve a dual gold catalysis mechanism which in an initial 6-endo-dig-cyclization generates gold(I) vinylidene intermediates that are able to insert into C−H bonds. Indenophenalene derivatives were obtained in moderate to high yields. In addition, the bidirectional gold-catalyzed annulation of tetraynes provided even larger conjugated π-systems. The optoelectronic properties of the products were also investigated.  相似文献   
4.
Molecular Diversity - A new series of aryloxyacetophenone thiosemicarbazones 4a–q have been synthesized as anti-Toxoplasma gondii agents. All compounds showed significant inhibitory activity...  相似文献   
5.
We report a switchable synthesis of acylindoles and quinoline derivatives via gold‐catalyzed annulations of anthranils and ynamides. α‐Imino gold carbenes, generated in situ from anthranils and an N,O‐coordinated gold(III) catalyst, undergo electrophilic attack to the aryl π‐bond, followed by unexpected and highly selective 1,4‐ or 1,3‐acyl migrations to form 6‐acylindoles or 5‐acylindoles. With the (2‐biphenyl)di‐tert‐butylphosphine (JohnPhos) ligand, gold(I) carbenes experienced carbene/carbonyl additions to deliver quinoline oxides. Some of these epoxides are valuable substrates for the preparation of 3‐hydroxylquinolines, quinolin‐3(4H)‐ones, and polycyclic compounds via facile in situ rearrangements. The reaction can be efficiently conducted on a gram scale and the obtained products are valuable substrates for preparing other potentially useful compounds. A computational study explained the unexpected selectivities and the dependency of the reaction pathway on the oxidation state and ligands of gold. With gold(III) the barrier for the formation of the strained oxirane ring is too high; whereas with gold(I) this transition state becomes accessible. Furthermore, energetic barriers to migration of the substituents on the intermediate sigma‐complexes support the observed substitution pattern in the final product.  相似文献   
6.
We report a switchable synthesis of acylindoles and quinoline derivatives via gold-catalyzed annulations of anthranils and ynamides. α-Imino gold carbenes, generated in situ from anthranils and an N,O-coordinated gold(III) catalyst, undergo electrophilic attack to the aryl π-bond, followed by unexpected and highly selective 1,4- or 1,3-acyl migrations to form 6-acylindoles or 5-acylindoles. With the (2-biphenyl)di-tert-butylphosphine (JohnPhos) ligand, gold(I) carbenes experienced carbene/carbonyl additions to deliver quinoline oxides. Some of these epoxides are valuable substrates for the preparation of 3-hydroxylquinolines, quinolin-3(4H)-ones, and polycyclic compounds via facile in situ rearrangements. The reaction can be efficiently conducted on a gram scale and the obtained products are valuable substrates for preparing other potentially useful compounds. A computational study explained the unexpected selectivities and the dependency of the reaction pathway on the oxidation state and ligands of gold. With gold(III) the barrier for the formation of the strained oxirane ring is too high; whereas with gold(I) this transition state becomes accessible. Furthermore, energetic barriers to migration of the substituents on the intermediate sigma-complexes support the observed substitution pattern in the final product.  相似文献   
7.
Although Pd(OAc)2-catalysed alkoxylation of the C(sp3)–H bonds mediated by hypervalent iodine(iii) reagents (ArIX2) has been developed by several prominent researchers, there is no clear mechanism yet for such crucial transformations. In this study, we shed light on this important issue with the aid of the density functional theory (DFT) calculations for alkoxylation of butyramide derivatives. We found that the previously proposed mechanism in the literature is not consistent with the experimental observations and thus cannot be operating. The calculations allowed us to discover an unprecedented mechanism composed of four main steps as follows: (i) activation of the C(sp3)–H bond, (ii) oxidative addition, (iii) reductive elimination and (iv) regeneration of the active catalyst. After completion of step (i) via the CMD mechanism, the oxidative addition commences with an X ligand transfer from the iodine(iii) reagent (ArIX2) to Pd(ii) to form a square pyramidal complex in which an iodonium occupies the apical position. Interestingly, a simple isomerization of the resultant five-coordinate complex triggers the Pd(ii) oxidation. Accordingly, the movement of the ligand trans to the Pd–C(sp3) bond to the apical position promotes the electron transfer from Pd(ii) to iodine(iii), resulting in the reduction of iodine(iii) concomitant with the ejection of the second X ligand as a free anion. The ensuing Pd(iv) complex then undergoes the C–O reductive elimination by nucleophilic attack of the solvent (alcohol) on the sp3 carbon via an outer-sphere SN2 mechanism assisted by the X anion. Noteworthy, starting from the five coordinate complex, the oxidative addition and reductive elimination processes occur with a very low activation barrier (ΔG 0–6 kcal mol−1). The strong coordination of the alkoxylated product to the Pd(ii) centre causes the regeneration of the active catalyst, i.e. step (iv), to be considerably endergonic, leading to subsequent catalytic cycles to proceed with a much higher activation barrier than the first cycle. We also found that although, in most cases, the alkoxylation reactions proceed via a Pd(ii)–Pd(iv)–Pd(ii) catalytic cycle, the other alternative in which the oxidation state of the Pd(ii) centre remains unchanged during the catalysis could be operative, depending on the nature of the organic substrate.

This work uses DFT calculations to explore Pd(ii)-catalysed iodine(iii)-mediated alkoxylation of unactivated C(sp3)–H bonds and reveals how important the isomerization is in triggering the oxidative addition of ArIX2 to Pd(ii).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号