首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
物理学   5篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
The (G′/G)-expansion method and its simplified version are used to obtain generalized travelling wave solutions of five nonlinear evolution equations (NLEEs) of physical importance, viz. the (2+1)-dimensional Maccari system, the Pochhammer–Chree equation, the Newell–Whitehead equation, the Fitzhugh–Nagumo equation and the Burger–Fisher equation. A variety of special solutions like periodic, kink–antikink solitons, bell-type solitons etc. can easily be derived from the general results. Three-dimensional profile plots of some of the solutions are also drawn.  相似文献   
2.
Optical fibre probes or optrodes often form the heart of multimode fibre-based measurements and sensors. An optrode usually comprises a bundle of multimode fibres, out of which one or more fibres are used for irradiating the sample, and the remaining fibres are used to collect the light reflected/scattered/fluoresced from the sample containing the measurand(s). The so-collected light carries the characteristic signature of the measurand. Here we present our work on the design and realization of optrodes for the measurement of scattered light from liquid samples. Optical properties of a solution are usually characterized by the parameters absorption coefficient μ a , scattering coefficient μ s , and anisotropy factor g. We have developed a simple method to determine μ a , μ s , and g, of a turbid medium, and a Monte–Carlo model was used to simulate the light scattering from the turbid medium. As an application, we describe the development of a turbidity sensor that has been designed and realized by employing an optrode in conjunction with a concave mirror. The estimation of turbidity is done on the basis of total interaction, by considering scattering and absorption of light from the sample solution. Details of the experiments and results are presented here.  相似文献   
3.
An analysis of thermal stratification in a transient free convection of nanofluids past an isothermal vertical plate is performed. Nanofluids containing nanoparticles of aluminium oxide, copper, titanium oxide and silver having volume fraction of the nanoparticles less than or equal to 0.04 with water as the base fluid are considered. The governing boundary layer equations are solved numerically. Thermal stratification effects and volume fraction of the nanoparticles on the velocity and temperature are represented graphically. It is observed that an increase in the thermal stratification parameter decreases the velocity and temperature profiles of nanofluids. An increase in the volume fraction of the nanoparticles enhances the temperature and reduces the velocity of nanofluids. Also, the influence of thermal stratification parameter and the volume fraction of the nanoparticles of local as well as average skin friction and the rate of heat transfer of nanofluids are discussed and represented graphically. The results are found to be in good agreement with the existing results in literature.  相似文献   
4.
J S VIRDI  F CHAND  C N KUMAR  S C MISHRA 《Pramana》2012,79(2):173-183
Complex dynamical invariants are searched out for two-dimensional complex potentials using rationalization method within the framework of an extended complex phase space characterized by x?=?x 1?+?i p 3,?y?=?x 2?+?i p 4, ?p x ?=?p 1?+?i x 3, ?p y ?=?p 2?+?i x 4. It is found that the cubic oscillator and shifted harmonic oscillator admit quadratic complex invariants. The obtained invariants may be useful for studying non-Hermitian Hamiltonian systems.  相似文献   
5.
In this paper, we obtain exact soliton solutions of the modified KdV equation, inhomogeneous nonlinear Schrödinger equation and G(m, n) equation with variable-coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the solitons to exist. Numerical simulations for dark and bright soliton solutions for the mKdV equation are also given.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号