首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
化学   5篇
力学   1篇
数学   9篇
物理学   20篇
  2022年   1篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2007年   6篇
  2005年   1篇
  2004年   3篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
The vibrational dynamics of protein folding is analyzed in the framework of Tsallis statistics. We employ exact expressions for classical harmonic oscillators by considering the unnormalized constraints. As q→1, we show that these approximations agree with the result of Gaussian network model.  相似文献   
2.
3.
4.
We review the state of the art of ultrashort-light-pulse measurement using frequency-resolved-optical-gating (FROG). Recent developments have extended the state of the art considerably. FROG devices for measuring the intensity and phase of ultrashort laser pulses have become so simple that almost no alignment is required. In addition, such devices not only operate single shot, but they also yield the two most important spatio-temporal distortions, spatial chirp and pulse-front tilt. With other FROG variations, it is now possible to measure more general ultrashort light pulses (i.e., pulses much more complex than common laser pulses), with time-bandwidth products as large as several thousand and as weak as a few hundred photons, and despite other difficulties such as random absolute phase and poor spatial coherence.  相似文献   
5.
6.
When the processing times of jobs are controllable, selected processing times affect both the manufacturing cost and the scheduling performance. A well known example for such a case that this paper specifically deals with is the turning operation on a CNC machine. Manufacturing cost of a turning operation is a nonlinear convex function of its processing time. In this paper, we deal with making optimal machine-job assignments and processing time decisions so as to minimize total manufacturing cost while the makespan being upper bounded by a known value, denoted as ?-constraint approach for a bicriteria problem. We then give optimality properties for the resulting single criterion problem. We provide alternative methods to compute cost lower bounds for partial schedules, which are used in developing an exact (branch and bound) algorithm. For the cases where the exact algorithm is not efficient in terms of computation time, we present a recovering beam search algorithm equipped with an improvement search procedure. In order to find improving search directions, the improvement search algorithm uses the proposed cost bounding properties. Computational results show that our lower bounding methods in branch and bound algorithm achieve a significant reduction in the search tree size that we need to traverse. Also, our recovering beam search and improvement search heuristics achieve solutions within 1% of the optimum on the average while they spent much less computational effort than the exact algorithm.  相似文献   
7.
The time dependent entropy (or Leipnik’s entropy) of harmonic and damped harmonic oscillator systems is studied by using time dependent wave function obtained by the Feynman path integral method. The Leipnik entropy and its envelope change as a function of time, angular frequency and damping factor. Our results for simple harmonic oscillator are in agreement with the literature. However, the joint entropy of damped harmonic oscillator shows remarkable discontinuity with time for certain values of damping factor. The envelope of the joint entropy curve increases with time monotonically. These results show the general properties of the envelope of the joint entropy curve for quantum systems.  相似文献   
8.

This study focuses on the experimental realization of the fractional-order FitzHugh–Nagumo (FHN) neuron model. Firstly, a second-order approximation function is included to the FHN neuron model to satisfy the fractional-order definition. Since these approximation functions can meet the response of the ideal system only in a limited frequency band, the identification of their center frequency is very critical. Thus, the center frequency ‘ωc’ of this second-order approximation functions is swept until getting the spiking responses of this neuron model for the first time in this study. After the center frequency is determined, this approximation function is transferred into the ‘z’ domain by employing the Tustin discretization operator. This achieved discrete defined and fractional-order FHN neuron model becomes suitable for implementation on the digital platforms. To verify the proficiency of the proposed sweeping process experimentally, the fractional-order FHN model in ‘z’ domain is implemented on the FPGA platform. After these applications, the order of the approximation function is reduced to one. Once this followed frequency sweeping process is repeated for the first-order approximation, the fractional-order FHN neuron model, which is built by this least-order approximation function, is also implemented with the FPGA. Therefore, the reductions of the device utilization amounts by using this least-order approximation function and the importance of the specific frequency identification process are seen clearly.

  相似文献   
9.
We describe experimentally simple, accurate, and reliable methods for measuring from very simple to potentially very complex ultrashort laser pulses. With only a few easily aligned components, these methods allow the measurement of a wide range of pulses, including those with time‐bandwidth products greater than 1000 and those with energies of only a few hundred photons. In addition, two new, very simple methods allow the measurement of the complete spatio‐temporal intensity and phase of even complex pulses on a single shot or at a tight focus.  相似文献   
10.
By immersing a conventional glass axicon in index-matching liquid, we generated high quality, tunable, quasi-non-diffracting Bessel beams. The aberrations resulting from the roundness of the axicon tip are minimized when a large base angle is used in liquid-immersion. This configuration also allows coarse and fine tunability through changing the liquid and adjusting the temperature, respectively. Our experimental results match very well with calculated intensity profiles. We succeeded to generate two-meter long plasma channels in air by focusing femtosecond laser pulses with the liquid-immersion axicon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号