首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   10篇
化学   70篇
晶体学   1篇
力学   1篇
数学   8篇
物理学   17篇
  2021年   4篇
  2020年   7篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   9篇
  2015年   4篇
  2014年   4篇
  2013年   11篇
  2012年   7篇
  2011年   7篇
  2010年   9篇
  2009年   3篇
  2008年   5篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1983年   1篇
排序方式: 共有97条查询结果,搜索用时 31 毫秒
1.
Journal of Sol-Gel Science and Technology - Multifunctional magnetic mesoporous nanocomposites are promising materials to remove the various pollutants from water due to the remarkable properties...  相似文献   
2.
Two methods are described for the production of hollow beads by copolymerization of styrene and divinyl benzene. Characterization of the beads is described and growth mechanisms proposed.  相似文献   
3.
4.
In this study, the catalytic activity and stability of flowerlike hybrid horseradish peroxidase (HRP) nanobiocatalyst (HRP-Cu 2+ ) obtained from Cu 2+ ions and HRP enzyme in the polymerization reaction of guaiacol were analyzed. We demonstrated that HRP-Cu 2+ and hydrogen peroxide (H 2 O 2 ) initiator showed significantly increased catalytic activity and stability on the polymerization of guaiacol compared to that of free HRP enzyme. Poly(guaiacol) was observed with quite high yields (88%) and molecular weights (38,000 g/mol) under pH 7.4 phosphate-buffered saline (PBS) conditions at 60 °C with 5 weight% of HRP-Cu 2+ loading. HRP-Cu 2+ also shows very high thermal stability and works even at 70 °C reaction temperature; free HRP enzyme denatures at that temperature. Furthermore, HRP-Cu 2+ provided considerable repeated use and showed some degree of catalytic activity, even after the fourth recycle, in the polymerization of guaiacol.  相似文献   
5.
Zeolites are widely used in many commercial processes, mostly as catalysts or adsorbents. Understanding their intimate structure at the nanoscale is the key to control their properties and design the best materials for their ever increasing uses. Herein, we report a new and controllable fluoride treatment for the non‐discriminate extraction of zeolite framework cations. This sheds new light on the sub‐structure of commercially relevant zeolite crystals: they are segmented along defect zones exposing numerous nanometer‐sized crystalline domains, separated by low‐angle boundaries, in what were apparent single‐crystals. The concentration, morphology, and distribution of such domains analyzed by electron tomography indicate that this is a common phenomenon in zeolites, independent of their structure and chemical composition. This is a milestone to better understand their growth mechanism and rationally design superior catalysts and adsorbents.  相似文献   
6.
Iron-based nanoparticles are prepared by a laser-induced chemical vapor deposition (CVD) process. They are characterized as body-centered Fe and Fe2O3 (maghemite/magnetite) particles with sizes ≤5 and 10 nm, respectively. The Fe particles are embedded in a protective carbon matrix. Both kind of particles are dispersed by spin-coating on SiO2/Si(1 0 0) flat substrates. They are used as catalyst to grow carbon nanotubes by a plasma- and filaments-assisted catalytic CVD process (PE-HF-CCVD). Vertically oriented and thin carbon nanotubes (CNTs) were grown with few differences between the two samples, except the diameter in relation to the initial size of the iron particles, and the density. The electron field emission of these samples exhibit quite interesting behavior with a low turn-on voltage at around 1 V/μm.  相似文献   
7.
Films formed by oxidation of dopamine are of interest for functionalisation of solid–liquid interfaces owing to their versatility. However, the ability to modulate the properties of such films, for example, permeability to ionic species and the absorption coefficient, is urgently needed. Indeed, melanin films produced by oxidation of dopamine absorb strongly over the whole UV/Vis part of the electromagnetic spectrum and are impermeable to anions even for a film thickness as low as a few nanometers. Herein we combine oxidation of dopamine to produce a solution containing dopamine–melanin particles and their alternating deposition with poly(diallyldimethylammonium chloride) to produce films which have nearly the same morphology as pure dopamine–melanin films but are less compact, more transparent and more permeable to ferrocyanide anions.  相似文献   
8.
The principle aspects and constraints of the dynamics and kinetics of zeolite nucleation in hydrogel systems are analyzed on the basis of a model Na‐rich aluminosilicate system. A detailed time‐series EMT‐type zeolite crystallization study in the model hydrogel system was performed to elucidate the topological and temporal aspects of zeolite nucleation. A comprehensive set of analytical tools and methods was employed to analyze the gel evolution and complement the primary methods of transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR) spectroscopy. TEM tomography reveals that the initial gel particles exhibit a core–shell structure. Zeolite nucleation is topologically limited to this shell structure and the kinetics of nucleation is controlled by the shell integrity. The induction period extends to the moment when the shell is consumed and the bulk solution can react with the core of the gel particles. These new findings, in particular the importance of the gel particle shell in zeolite nucleation, can be used to control the growth process and properties of zeolites formed in hydrogels.  相似文献   
9.
Aluminum is one of the most toxic metals causing a variety of neurologic diseases, especially Alzheimer's disease. It is impossible to avoid contact with aluminum because of its existence in food to medications. Therefore, removal of aluminum from the blood or wastewater is urgently important. The cost-effective and easy-to-prepare adsorbents are needed to get efficient aluminum removal. For that purpose, the poly(2-hydroxyethylmethacrylate-co-acrylic acid), poly(HEMA-co-AA), microparticles was synthesized to remove aluminum in a very short interaction time. The achievement of the desired polymeric structure was confirmed via Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM), etc. Additionally, particle features such as swelling ratio, size, and surface area were determined. The microparticles synthesized in this study have been determined with very good adsorption capacity even in small aluminum concentrations.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号