首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
物理学   4篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schrödinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields.  相似文献   
2.
International Journal of Theoretical Physics - The varational method with the Hamiltonian formalism of quantum field theory (QFT) is used to study the bound state for scalar particle and...  相似文献   
3.
The variational method within the Hamiltonian formalism of quantum field theory has been used in order to investigate the effect of virtual pairs for four-body scalar systems consisting of two particles and two antiparticles of the same mass. The scalar particles and antiparticles interact via a massive or massless mediating scalar field. The ground state energy solutions of Fock-space variational trial states (\(|N{\bar {N}}N{\bar {N}}{ \rangle }+|N{\bar {N}}N{\bar {N}}N{\bar {N}\rangle }\)) of the relativistic wave equations have been studied. We have compared these results with the previous work of four-body system (variational trial states of the form \(|N{ \bar {N}}N{\bar {N}}{\rangle }\)) and we have shown that the inclusion of virtual pairs has a noticeable effect at low coupling and at high coupling the energy of the system is changed by an important amount. In other words, the calculations show that the inclusion of virtual pairs augments the binding energy of the four-body system by a substantial amount at strong coupling. This study can pave the way for some new ideas in order to investigate the effect of virtual pairs, for example, for a bound-states quark-antiquark or tetraquark systems in future.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号