首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   4篇
化学   29篇
晶体学   1篇
力学   1篇
数学   3篇
物理学   14篇
  2023年   2篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  1999年   1篇
  1978年   1篇
排序方式: 共有48条查询结果,搜索用时 172 毫秒
1.
[CpIrCl2]2 catalyses the cyclization of 2-alkynylanilines into indoles. A wide variety of substrates is tolerated. A reaction pathway involving intramolecular hydroamination is proposed.  相似文献   
2.
Urine is considered as one of the diagnostically important bio fluids, as it has many metabolites. The distribution and the physiochemical properties of the metabolites may vary during any altered metabolic and pathological conditions. Raman spectroscopy was employed in the characterization of the metabolites of human urine of normal subjects and oral cancer patients in the finger print region (500–1800 cm−1). Principal component analysis‐based linear discriminant analysis was performed to discriminate cancer patients from normal subjects. The discriminant analysis classifies the cancer patients from normal subjects with a sensitivity and specificity of 98.6% and 87.1%, respectively, with an overall accuracy of 93.7%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
3.
In this work, we studied the formation of the rutile phase of titanium dioxide (TiO2) on delaminated MXene (d‐Ti3C2Tx) flakes by the reaction of Ti3C2Tx with amino acids in water. Three types of amino acids with varied side‐chain polarity were used to delaminate Ti3C2Tx. d‐Ti3C2Tx flakes formed stable colloidal solutions due to the negative surface charges of chemisorbed amino acids on the d‐Ti3C2Tx. Rutile formed on d‐Ti3C2Tx at room temperature upon the intercalation of aromatic amino acids and subsequent sonication of the solution, while flakes intercalated with aliphatic amino acids did not oxidize. X‐Ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy revealed the nanosize rutile formation on the surface of Ti3C2Tx flakes. The XPS results indicated the surface functionalization of histidine on d‐Ti3C2Tx flakes. As‐synthesized histidine functionalized rutile TiO2@d‐Ti3C2Tx hybrid was used for adsorption of Cu2+ ions from aqueous solution with a maximum uptake of 95 mg g?1.  相似文献   
4.
5.
The nanostructured thin NiO films with the thicknesses of 30–180 nm were examined as a sensing electrode (SE) for the planar mixed-potential-type yttria-stabilized zirconia (YSZ)-based NO2 sensor. The sensing characteristics were examined in the temperature range of 600–800 °C under the wet condition (5 vol.% water vapor). Among the NiO-SEs tested, the 60 nm-thick NiO-SE sintered at 1,000 °C was found to give the highest NO2 sensitivity in the NO2 concentration range of 50–400 ppm accompanying with fast response/recovery at the operating temperatures of 600–700 °C. The high NO2 sensitivity was attributed to the high catalytic activity for both electrochemical reactions of O2 and NO2 at the interface of NiO-SE/YSZ. The ultrathin gold layer with the thickness of about 60 nm was additionally formed on the 60 nm-thick NiO-SE to fabricate the laminated-type (60 nm NiO/60 nm Au)-SE. It was demonstrated that the use of this laminated (NiO–Au)-SE improved both the sensitivity and the selectivity to NO2.  相似文献   
6.
The iridium complex [Cp1IrCl2]2 is a good catalyst for the directed oxidative coupling of arenes with alkenes; a wide range of carbonyl functionalities (NHCOR, CONH2 and COR) can be employed as the directing group.  相似文献   
7.
Herein we report a simple and efficient oxidative coupling of various aryl methyl amines with diverse coupling partners, such as o-phenylenediamine (benzene-1,2-diamine), 2-aminobenzenethiol and 2-aminobenzamide, to synthesize the corresponding heterocycles using scalable and reusable heterogeneous catalysts under visible light irradiation. A systematic investigation led to the synthesis of benzimidazoles, benzothiazoles and quinazolinones under air atmosphere in very good to excellent yields. The strategy is atom economical and found to be tolerance towards different functional groups, and wide range of substrate scope. Furthermore, the methodology was demonstrated for its suitability on scale up and reusability. The density functional theory (DFT) calculations and the analysis of band structures of pristine and Ba doped CoMoO4 systems showed that the doping of Ba in place of Co improved the catalytic performance of the system.  相似文献   
8.
Charge-transfer resistance [R ct = (dη/di)η = 0] and Tafel plots of current density (i) versus overpotential (η) data are generally known to yield values of the energy-transfer coefficient (α) and exchange current density (i o) of an electrochemical reaction. In the present investigation, the resistance (dη/di)η≠0 that could be calculated by differentiating a wide range of i−η curves was also shown to provide the values of α and i o, by plotting ln(dη/di)η≠0 against η. Since α and i o could also be evaluated directly from the experimental DC polarization data, the procedure was not of significant importance. Nevertheless, it was considered important in evaluating α and i o from AC impedance data, because the procedure was based on data analysis, which was much simpler than that reported in the literature. A cobalt electrode prepared from fine metal powder was used in 1 M KOH electrolyte and the hydrogen evolution reaction was studied by AC impedance at several potentials. The resistance values measured from the complex plane impedance diagram were plotted against the potential, and the values of α and i o were evaluated. Received: 8 October 1998 / Accepted: 11 January 1999  相似文献   
9.
Nickel oxide and chromium-doped nickel oxide (Ni0.95Cr0.03O1−δ ) were prepared by thermal decomposition of nitrates. The obtained NiO and Ni0.95Cr0.03O1−δ samples were utilized as sensing electrodes (SEs) in yttria-stabilized zirconia (YSZ)-based sensors for detection of NO2 at 800 °C under wet condition (5 vol.% H2O). While the mixed-potential-type planar sensor attached with NiO-SE gave rather large NO2 sensitivity, the sensor attached with Ni0.95Cr0.03O1−δ -SE exhibited fast recovery rate with an acceptable sensitivity. The Δemf (electromotive force) of the sensors varied linearly with NO2 concentration in the examined range of 50–400 ppm on a logarithmic scale. Based on the results of measurements for polarization, complex impedance and gas phase catalysis, the fast recovery was attributable to the high rate for the anodic reaction of O2 at the Ni0.95Cr0.03O1−δ /YSZ interface, and the lower NO2 sensitivity was caused by both the high rate for the anodic reaction of O2 and the high degree for the gas phase conversion of NO2 to NO.  相似文献   
10.
Some novel Y-shaped imidazole derivatives were developed and characterized by NMR and mass spectral techniques. The photophysical properties of these imidazole derivatives were studied in several solvents. The Kamlet-Taft and Catalan’s solvent scales were found to be the most suitable for describing the solvatochromic shifts of the absorption and fluorescence emission. The adjusted coefficient representing the electron releasing ability or basicity of the solvent, C β or C SB has a negative value, suggesting that the absorption and fluorescence bands shift to lower energies with the increasing electron-donating ability of the solvent. This effect can be interpreted in terms of the stabilization of the resonance structures of the chromophore. The observed lower fluorescence quantum yield may be due to an increase in the non-radiative deactivation rate constant. This is attributed to the loss of planarity in the excited state provided by the non co-planarity of the cinnamaldehyde ring attached to C(2) atom of the imidazole ring. Such a geometrical change in the excited state leads to an important Stokes shift, reducing the reabsorption and reemission effects in the detected emission in highly concentrated solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号