首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
力学   6篇
物理学   2篇
  2016年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2006年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
In this study, the problem of steady state natural convection in an enclosure filled with a nanofluid has been analyzed numerically by using heating and cooling by sinusoidal temperature profiles on one side. The governing partial differential equations, in terms of the dimensionless stream function–vorticity and temperature, are solved numerically using the finite volume method for various inclination angles 0°≤?≤90°0°?90°, different types of nanoparticles (TiO2 and Al2O3) and fractions of nanoparticles 0≤φ≤0.10φ0.1, whereas the range of the Rayleigh number Ra is 103–105. It is found that the addition of nanoparticles into water affects the fluid flow and temperature distribution especially for higher Rayleigh numbers. An enhancement in heat transfer rate was registered for the whole range of Rayleigh numbers. However, low Rayleigh numbers show more enhancement compared to high Rayleigh numbers.  相似文献   
2.
A numerical study was performed on natural convection for water–CuO nanofluid filled enclosure where the top surface was partially exposed to convection. The cavity has a square cross-section and differentially heated. Except exposed convection part on the top, all sides are adiabatic on horizontal walls. Effects of Rayleigh number (103 ? Ra ? 105), Biot number (0 ? Bi ? ∞), length of partial convection (0.0 ? L ? 1.0) and volume fraction of nanoparticles (0.0 ? φ ? 0.1) on heat and fluid flow were investigated. The results showed that for the case of high Biot number that heat transfer along the heated was enhanced by increasing the Rayleigh number mainly at the upper portion of the heated wall. When the top wall was totally exposed to convection, the results prevail that the heat transfer was more effective at high Biot number especially at the upper portion of the heated wall. For the case of high Biot number, the results prevailed that the heat transfer at the upper portion of the heated wall increases considerably at high exposed length to convection (L); however, for L ? 0.75 the effect of L was less pronounced. Contour maps for percentage of heat transfer enhancement were presented and it was shown that the location of maximum enhancement in heat transfer was sensitive to Ra, φ and L.  相似文献   
3.
Effects of inclination angle on natural convection heat transfer and fluid flow in a two-dimensional enclosure filled with Cu-nanofluid has been analyzed numerically. The performance of nanofluids is tested inside an enclosure by taking into account the solid particle dispersion. The angle of inclination is used as a control parameter for flow and heat transfer. It was varied from  = 0° to  = 120°. The governing equations are solved with finite-volume technique for the range of Rayleigh numbers as 103  Ra  105. It is found that the effect of nanoparticles concentration on Nusselt number is more pronounced at low volume fraction than at high volume fraction. Inclination angle can be a control parameter for nanofluid filled enclosure. Percentage of heat transfer enhancement using nanoparticles decreases for higher Rayleigh numbers.  相似文献   
4.
Heat transfer enhancement in horizontal annuli using variable properties of Al2O3–water nanofluid is investigated. Different viscosity and thermal conductivity models are used to evaluate heat transfer enhancement in the annulus. The base case uses the Chon et al. expression for conductivity and the Nguyen et al. experimental data for viscosity which take into account the dependence of these properties on temperature and nanoparticle volume fraction. It was observed that for Ra  104, the average Nusselt number was reduced by increasing the volume fraction of nanoparticles. However, for Ra = 103, the average Nusselt number increased by increasing the volume fraction of nanoparticles. For Ra  104, the Nusselt number was deteriorated every where around the cylinder surface especially at high expansion ratio. However, this reduction is only restricted to certain regions around the cylinder surface at Ra = 103. For Ra  104, the difference in Nusselt number between the Maxwell Garnett and Chon et al. model prediction is small. But, there was a deviation in prediction at Ra = 103 and this deviation becomes more significant at high volume fraction of nanoparticles. The Nguyen et al. data and Brinkman model gives completely different predictions for Ra  104 where the difference in prediction of Nusselt number reached 30%. However, this difference was less than 10% at Ra = 103.  相似文献   
5.
6.
Dissipative particle dynamics (DPD) was applied to fluid flow in irregular geometries using non‐orthogonal transformation, where an irregular domain is transformed into a simple rectangular domain. Transformation for position and velocity was used to relate the physical and computational domains. This approach was described by simulating fluid flow inside a two‐dimensional convergent–divergent nozzle. The nozzle geometry is controlled by the contraction ratio (CR) in the middle of the channel. The range of Reynolds number and CR, in this paper, was Re = 10hbox??200 and CR = 0.8 and 0.6, respectively. The DPD results were validated against in‐house computational fluid dynamic (CFD) finite volume code based on the stream function vorticity approach. The results revealed an excellent agreement between DPD and CFD. The maximum deviation between the DPD and CFD results was within 2%. Local and average coefficients of friction was calculated and it compared well with the CFD results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
7.
Drag reduction (DR) for air and water flowing in an inclined 0.0127 m diameter pipe was investigated experimentally. The fluids had an annular configuration and the pipe is inclined upward. The injection of drag reducing polymer (DRP) solution produced drag reductions as high as 71% with concentration of 100 ppm in the pipeline. A maximum drag reduction that is accompanied (in most cases) by a change to a stratified or annular-stratified pattern. The drag reduction is sensitive to the gas and liquid superficial velocities and the pipe inclination. Maximum drag reduction was achieved in the case of pipe inclination of 1.28° at the lowest superficial gas velocity and the highest superficial liquid velocity. For the first time in literature, the drag reduction variations with the square root of the superficial velocities ration for flows with the same final flow patterns have self-similar behaviors.  相似文献   
8.
This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven inclined square enclosure filled with water–Al2O3 nanofluid. The left and right walls of the enclosure are kept insulated while the bottom and top walls are maintained at constant temperatures with the top surface being the hot wall and moving at a constant speed. The developed equations are given in terms of the stream function–vorticity formulation and are non-dimensionalized and then solved numerically subject to appropriate boundary conditions by a second-order accurate finite-volume method. Comparisons with previously published work are performed and found to be in good agreement. A parametric study is conducted and a set of graphical results is presented and discussed to illustrate the effects of the presence of nanoparticles and enclosure inclination angle on the flow and heat transfer characteristics. It is found that significant heat transfer enhancement can be obtained due to the presence of nanoparticles and that this is accentuated by inclination of the enclosure at moderate and large Richardson numbers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号