首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   0篇
化学   18篇
数学   3篇
物理学   47篇
  2021年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   8篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1986年   2篇
排序方式: 共有68条查询结果,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
Hydrogen embrittlement of aluminum: the crucial role of vacancies   总被引:1,自引:0,他引:1  
We report first-principles calculations which demonstrate that vacancies can combine with hydrogen impurities in bulk aluminum and play a crucial role in the embrittlement of this prototypical ductile solid. Our studies of hydrogen-induced vacancy superabundant formation and vacancy clusterization in aluminum lead to the conclusion that a large number of H atoms (up to 12) can be trapped at a single vacancy, which overcompensates the energy cost to form the defect. In the presence of trapped H atoms, three nearest-neighbor single vacancies which normally would repel each other, aggregate to form a trivacancy on the slip plane of Al, acting as embryos for microvoids and cracks and resulting in ductile rupture along these planes.  相似文献   
7.
We investigate the atomic structure and electronic properties of monolayers of copper phthalocyanines (CuPc) deposited on epitaxial graphene substrate. We focus in particular on hexadecafluorophthalocyanine (F(16)CuPc), using both theoretical and experimental (scanning tunneling microscopy - STM) studies. For the individual CuPc and F(16)CuPc molecules, we calculated the electronic and optical properties using density functional theory (DFT) and time-dependent DFT and found a red-shift in the absorption peaks of F(16)CuPc relative to those of CuPc. In F(16)CuPc, the electronic wavefunctions are more polarized toward the electronegative fluorine atoms and away from the Cu atom at the center of the molecule. When adsorbed on graphene, the molecules lie flat and form closely packed patterns: F(16)CuPc forms a hexagonal pattern with two well-ordered alternating α and β stripes while CuPc arranges into a square lattice. The competition between molecule-substrate and intermolecular van der Waals interactions plays a crucial role in establishing the molecular patterns leading to tunable electron transfer from graphene to the molecules. This transfer is controlled by the layer thickness of, or the applied voltage on, epitaxial graphene resulting in selective F(16)CuPc adsorption, as observed in STM experiments. In addition, phthalocyanine adsorption modifies the electronic structure of the underlying graphene substrate introducing intensity smoothing in the range of 2-3 eV below the Dirac point (E(D)) and a small peak in the density of states at ~0.4 eV above E(D).  相似文献   
8.
Ultrathin oxide layers can exhibit special behavior by enabling the coupling of structural distortions and charge transfer beyond that allowed in the bulk. In this work, we show from first-principles calculations that ultrathin layers of titania, a prototypical oxide, are active in stabilizing adsorption of O2 on Au overlayers. The adsorbed O2 molecules induce charge redistribution in Au that penetrates to the Au-titania interface, which responds through structural distortions that lower the total energy of the system. We suggest that this effect may be of more general nature and useful in catalysis.  相似文献   
9.
Various experimental techniques have revealed that the predominant intrinsic point defects in BaF2 are anion Frenkel defects. Their formation, enthalpy and entropy, as well as the corresponding parameters for the fluorine vacancy and fluorine interstitial motion have been determined. In addition, low temperature dielectric relaxation measurements in BaF2doped with uranium leads to the parameters τ0, E in the Arrhenius relation τ = τ0 exp(E/k B T) for the relaxation time τ. For the relaxation peak associated with a single tetravalent uranium, the migration entropy deduced from the pre-exponential factor τ0 is smaller than the anion Frenkel defect formation entropy by almost two orders of magnitude. We show that, despite their great variation, the defect entropies and enthalpies are interconnected through a model based on anharmonic properties of the bulk material which have been recently studied by employing density-functional theory and density-functional perturbation theory.  相似文献   
10.
Structural model of eumelanin   总被引:1,自引:0,他引:1  
Melanin is a ubiquitous pigment in living organisms with multiple important functions, yet its structure is not well understood. We propose a structural model for eumelanin protomolecules, consisting of 4 or 5 of the basic molecular units (hydroquinone, indolequinone, and its tautomers), in arrangements that contain an inner porphyrin ring. We use time-dependent density functional theory to calculate the optical absorption spectrum of the structural model, which reproduces convincingly the main features of the experimental spectrum of eumelanin. Our model also reproduces accurately other important properties of eumelanin, including x-ray scattering data, its ability to capture and release metal ions, and the characteristic size of the protomolecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号