首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   4篇
物理学   3篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.

Background  

Protein phosphatase one (PP1) is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif.  相似文献   
2.
Progressive saturation EPR measurements and EPR linewidth determinations have been performed on spin-labeled lipids in fluid phospholipid bilayer membranes to elucidate the mechanisms of relaxation enhancement by different paramagnetic ion salts. Such paramagnetic relaxation agents are widely used for structural EPR studies in biological systems, particularly with membranes. Metal ions of the 3d and 4f series were used as their chloride, sulfate, and perchlorate salts. For a given anion, the efficiency of relaxation enhancement is in the order Mn(2+) > or = Cu(2+) > Ni(2+) > Co(2+) approximately Dy(3+). A pronounced dependence of the paramagnetic relaxation enhancement on the anion is found in the order ClO(-)(4) > Cl(-) > SO(2-)(4). This is in the order of the octanol partition coefficients multiplied by spin exchange rate constants that were determined for the different paramagnetic salts in methanol. Detailed studies coupled with theoretical estimates reveal that, for the chlorides and perchlorates of Ni(2+) (and Co(2+)), the relaxation enhancements are dominated by Heisenberg spin exchange interactions with paramagnetic ions dissolved in fluid membranes. The dependence on membrane composition of the relaxation enhancement by intramembrane Heisenberg exchange indicates that the diffusion of the ions within the membrane takes place via water-filled defects. For the corresponding Cu(2+) salts, additional relaxation enhancements arise from dipolar interactions with ions within the membrane. For the case of Mn(2+) salts, static dipolar interactions with paramagnetic ions in the aqueous phase also make a further appreciable contribution to the spin-label relaxation enhancement. On this basis, different paramagnetic agents may be chosen to optimize sensitivity to different structurally correlated interactions. These results therefore will aid further spin-label EPR studies in structural biology.  相似文献   
3.
alpha-Keto alkynes react with CO and H(2) in the presence of catalytic quantities of the zwitterionic rhodium complex (eta(6)-C(6)H(5)BPh(3))(-)Rh(+)(1,5-COD) and triphenyl phosphite affording either the 2-, 2(3H)-, or 2(5H)-furanones in 61-93% yields. The cyclohydrocarbonylation is readily accomplished using substrates containing alkyl, aryl, vinyl, and alkoxy groups at the acetylenic terminal, as well as a variety of primary, secondary, and tertiary alkyl, aryl, and heteroaryl groups connected to the ketone functionality. Structural and electronic properties present in the starting materials mediate the chemo- and regioselectivity of the reaction.  相似文献   
4.
Guest-host complexes of β- and γ-cyclodextrins (CDs) with two spin-labeled indole derivatives having the same molecular weights but different structures were studied by EPR spectroscopy in aqueous solutions and semiempirical quantum-chemical calculations of these systems were carried out. In the presence of CD the polarity of the NO group environment decreases and the rotational correlation time (τ) of guest molecules increases. Both indole derivatives form 1 : 1 complexes with γ-CD, the binding constants of the complexes being different more than twice. Simulation of EPR spectra made it possible to determine the indole ring orientation relative to the plane of the host molecule (at angles in the range 30–60°) and the rotational diffusion coefficients of the complexes, which corresponded to the hydrodynamic volume of one γ-CD molecule. In contrast to the complexes with γ-CD the rotational correlation times, τ, of the complexes with β-CD correspond to a hydrodynamic volume which much exceeds the volume of a single β-CD molecule. The complexes with β-CD are also characterized by more hydrophobic environment for guest molecules and absence of spin exchange with Ni2+ ions in the aqueous solution. There results are consistent with a dimeric structure of β-CD in the complex and with the orientation of the long axis of the guest molecule along the dimer axis. The energies and geometric parameters were calculated for all complexes by the PM3 method with a conventional set of parameters. The optimized energetically stable structures of the 1 : 1 complexes with γ-CD and of the 1 : 2 complexes with β-CD are consistent with experimental data. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1139–1147, May, 2005.  相似文献   
5.
A combination of isopotential spin-dry ultracentrifugation (ISDU) and microtome techniques was used to facilitate the collection of high field/high frequency (170 GHz) ESR spectra corresponding to different orientations of the membrane normal relative to the magnetic field. This technique is particularly valuable for aligned biological samples in vitro. At 170 GHz, conventional sample preparation techniques based solely on ISDU constrained the sample to be oriented so that the membrane normal was parallel to the applied magnetic field due to the geometry and the millimeter wave field distribution of the Fabry-Pérot resonator used in these experiments. This orientational constraint limited the information that could be obtained from aligned membranes at high field. The combined ISDU/microtome technique overcame this limitation. Spectra from spin-labeled Gramicidin A and the spin label cholestane in aligned DPPC membranes provide a demonstration of the technique. We also discuss some virtues of high field/high frequency ESR on aligned membranes compared to X-band.  相似文献   
6.
Nitric oxide (NO) is a potent intercellular signal for defense, development, and metabolism in animals and plants. In mammals, highly regulated nitric oxide synthases (NOSs) generate NO. NOS homologs exist in some prokaryotes, but direct evidence for NO production by these proteins has been lacking. Here, we demonstrate that a NOS in plant-pathogenic Streptomyces species produces diffusible NO. NOS-dependent NO production increased in response to cellobiose, a plant cell wall component, and occurred at the host-pathogen interface, demonstrating induction by host signals. These data document in vivo production of NO by prokaryotic NOSs and implicate pathogen-derived NO in host-pathogen interactions. NO may serve as a signaling molecule in other NOS-containing bacteria, including the medically and environmentally important organisms Bacillus anthracis, Staphylococcus aureus, and Deinococcus radiodurans.  相似文献   
7.
Continuous-wave (CW) EPR measurements of enhancements in spin-lattice (T(1)-) relaxation rate find wide application for determining spin-label locations in biological systems. Often, especially in membranes, the spin-label rotational motion is anisotropic and subject to an orientational potential. We investigate here the effects of anisotropic diffusion and ordering on non-linear CW-EPR methods for determining T(1) of nitroxyl spin labels. Spectral simulations are performed for progressive saturation of the conventional in-phase, first-harmonic EPR signal, and for the first-harmonic absorption EPR signals detected 90 degrees -out-of-phase with respect to the Zeeman field modulation. Motional models used are either rapid rotational diffusion, or strong-jump diffusion of unrestricted frequency, within a cone of fixed maximum amplitude. Calculations of the T(1)-sensitive parameters are made for both classes of CW-experiment by using motional parameters (i.e., order parameters and correlation times), intrinsic homogeneous and inhomogeneous linewidth parameters, and spin-Hamiltonian hyperfine- and g-tensors, that are established from simulation of the linear CW-EPR spectra. Experimental examples are given for spin-labelled lipids in membranes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号