首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
化学   22篇
力学   1篇
物理学   8篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2008年   5篇
  2006年   5篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1994年   1篇
  1992年   1篇
  1984年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
A series of chiral phosphine-phosphite ligands 1-6 have been synthesized and used in the enantioselective palladium-catalyzed reaction of rac-1,3-diphenyl-2-propenyl acetate with dimethyl malonate as nucleophile. Ligands 1a, 2, 3, 5a, 6a, and 6b have been synthesized starting from racemic tert-butylphenylphosphinoborane. The use of dynamically resolved Li phosphide (-)-sparteine provided the optically pure ligands. Crystals of the allylpalladium (6a) complex were obtained, suitable for X-ray crystal structure determination. The X-ray crystal structure of the allylpalladium (6a) complex revealed a longer palladium-carbon bond distance trans to the phosphine moiety indicating that the attack of the nucleophile takes place at the carbon trans to the phosphine moiety. This was confirmed by the fact that the phosphine moiety did not affect the enantioselectivity directly. Under mild reaction conditions, enantioselectivities up to 83% were obtained (25 degrees C) with ligand 1e. Systematic variation of the ligand bridge and the phosphite moiety showed that the configuration of the product is controlled by the atropisomerism of the biphenyl substituent at the phosphite moiety. The conformation of the biphenyl group, in turn, is controlled by the substituent at the chiral carbon in the bridge. Ligands with large bite angles yielded higher enantioselectivities.  相似文献   
2.
The use of two-dimensional transform techniques in the observation of multiple-quantum transitions in large spin systems in anisotropic environments is described. In the case of partial resolution in the ω2 dimension, it is shown that the signal to noise of the projection onto ω1 of the absolute magnitude two-dimensional multiple-quantum spectrum is considerably greater than that of the Fourier transform of the t2 = 0 cross section. In practical terms, multiple- quantum transitions of very high order may be observed with good signal to noise after acquisition periods much shorter than previously reported by cross section methods.  相似文献   
3.
Well-crystallized kaolinite (K) was initially reacted at 60 degrees C with a water/dimethylsulfoxide (DMSO) mixture and the resulting intercalation derivative (K-DMSO) was characterized by powder X-ray diffractometry (PXRD), thermal analysis (simultaneous TG and DSC), and Fourier-transformed infrared spectroscopy (FTIR). Benzamide crystals were then melted with the K-DMSO derivative at 140 degrees C for 4 days, when a gradual displacement of DMSO by benzamide was observed within the interlayer spacing of the modified kaolinite. The resulting material, after extensive washing with acetone, was characterized and compared to the results obtained previously for the K-DMSO composite. Benzamide intercalation proceeded by gradual displacement of DMSO molecules until completion. The structural stabilization of the K-BZ derivative was explained through the establishment of hydrogen bonds between the carbonyl oxygen atoms of the intercalated benzamide and aluminol groups present at the surface of the kaolinite layer. The interlamellar spacing of K-BZ was shown to be possibly occupied by benzamide molecules that were located at a 68 degrees orientation in relation to the layer surface. Unlike most intercalation molecules such as DMSO, variations in the interplanar spacing of kaolinite were consistent with the nonkeying of any other part of the molecule between the aluminosilicate interlayers. Copyright 2000 Academic Press.  相似文献   
4.
5.
A nucleoside carrying a perfluorinated tert-butyl group ( 4) was prepared by a Sonogashira coupling of 5-iodo-2'-deoxyuridine with 4,4,4-trifluoro-3,3-bis(trifluoromethyl)-1-butyne in nearly quantitative yield and subsequently incorporated into DNA oligomers. Thermal denaturation studies showed that 4 had a negligible effect on duplex stability when compared to thymidine. Transition from single strand to duplex was monitored by (19)F NMR spectroscopy at micromolar concentrations of oligomers, demonstrating the sensitivity of 4 as an NMR reporter nucleoside.  相似文献   
6.
The dynamics of the furanose rings in the GCGC moiety of the DNA oligomer [d(G 1A 2T 3A 4 G 5 C 6 G 7 C 8T 9A 10T 11C 12)] 2 are studied by using deuterium solid-state NMR (SSNMR). SSNMR spectra obtained from DNAs selectively deuterated on the furanose rings of nucleotides within the 5'-GCGC-3' moiety indicated that all of these positions are structurally flexible. The furanose ring within the deoxycytidine that is the methylation target displays the largest-amplitude structural changes according to the observed deuterium NMR line shapes, whereas the furanose rings of nucleotides more remote from the methylation site have less-mobile furanose rings (i.e., with puckering amplitudes < 0.3 A). Previous work has shown that methylation reduces the amplitude of motion in the phosphodiester backbone of the same DNA, and our observations indicate that methylation perturbs backbone dynamics through the furanose ring. These NMR data indicate that the 5'-GCGC-3' is dynamic, with the largest-amplitude motions occurring nearest the methylation site. The inherent flexibility of this moiety in DNA makes the molecule more amenable to the large-amplitude structural rearrangements that must occur when the DNA binds to the HhaI methyltransferase.  相似文献   
7.
Extracellular biomineralization proteins such as salivary statherin control the growth of hydroxyapatite (HAP), the principal component of teeth and bones. Despite the important role that statherin plays in the regulation of hard tissue formation in humans, the surface recognition mechanisms involved are poorly understood. The protein-surface interaction likely involves very specific contacts between the surface atoms and the key protein side chains. This study demonstrates for the first time the power of combining near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with element labeling to quantify the orientation of individual side chains. In this work, the 15 amino acid N-terminal binding domain of statherin has been adsorbed onto HAP surfaces, and the orientations of phenylalanine rings F7 and F14 have been determined using NEXAFS analysis and fluorine labels at individual phenylalanine sites. The NEXAFS-derived phenylalanine tilt angles have been verified with sum frequency generation spectroscopy.  相似文献   
8.
The adsorption or covalent attachment of biological macromolecules onto polymer materials to improve their biocompatibility has been pursued using a variety of approaches, but key to understanding their efficacy is the verification of the structure and dynamics of the immobilized biomolecules. Here we present data on peptides designed to adsorb from aqueous solutions onto highly porous hydrophobic surfaces with specific helical secondary structures. Small linear peptides composed of alternating leucine and lysine residues were synthesized, and their adsorption onto porous polystyrene surfaces was studied using a combination of solid-state NMR techniques. Using conventional solid-state NMR experiments and newly developed double-quantum techniques, their helical structure was verified. Large-amplitude dynamics on the NMR time scale were not observed, suggesting irreversible adsorption of the peptides. Their association, adsorption, and structure were examined as a function of helix length and sequence periodicity, and it was found that, at higher solution concentrations, peptides as short as seven amino acids adsorb with defined secondary structures. Two-dimensional double-quantum experiments using (13)C-enriched peptide sequences allow high-resolution determination of secondary structure in heterogeneous environments where the peptides are a minor component of the material. These results shed light on how polymeric surfaces may be surface-modified by structured peptides and demonstrate the level of molecular structural and dynamic information solid-state NMR can provide.  相似文献   
9.
The complex of the HIV TAR RNA with the viral regulatory protein Tat is of considerable interest, but the plasticity of this interaction has made it impossible so far to establish the structure of that complex. In order to explore a new approach to obtain structural information on protein-RNA complexes, we performed (13)C/(15)N-(19)F REDOR NMR experiments in the solid state on TAR bound to a peptide comprising the RNA-binding section of Tat. A critical arginine in the peptide was uniformly (13)C and (15)N labeled, and 5-fluorouridine was incorporated at the U23 position of TAR. REDOR irradiation resulted in dephasing of the (13)C and (15)N resonances, indicating the proximity of the U23(5F)-C and U23(5F)-N spin pairs. Best fits to the REDOR data show the U23(5F)-C distances and the U23(5F)-N distances are in good agreement with the distances obtained from solution NMR structures of partial complexes of Tat with TAR. These results demonstrate that it is possible to study protein-RNA complexes using solid-state REDOR NMR measurements, adding to a growing list of solid state techniques for studying protein-nucleic acid complexes.  相似文献   
10.
The dynamics of the phosphodiester backbone in the [5'-GCGC-3'] 2 moiety of the DNA oligomer [d(G 1A 2T 3A 4 G 5 C 6 G 7 C 8T 9A 10T 11C 12)] 2 are studied using deuterium solid-state NMR (SSNMR). SSNMR spectra obtained from DNAs nonstereospecifically deuterated on the 5' methylene group of nucleotides within the [5'-GCGC-3'] 2 moiety indicated that all of these positions are structurally flexible. Previous work has shown that methylation reduces the amplitude of motion in the phosphodiester backbone and furanose ring of the same DNA, and our observations indicate that methylation perturbs backbone dynamics through not only a loss of mobility but also a change of direction of motion. These NMR data indicate that the [5'-GCGC-3'] 2 moiety is dynamic, with the largest amplitude motions occurring nearest the methylation site. The change of orientation of this moiety in DNA upon methylation may make the molecule less amenable to binding to the HhaI endonuclease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号