首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   4篇
  国内免费   1篇
化学   87篇
晶体学   5篇
力学   2篇
数学   26篇
物理学   17篇
  2023年   3篇
  2022年   5篇
  2021年   5篇
  2020年   5篇
  2019年   4篇
  2018年   3篇
  2017年   8篇
  2016年   5篇
  2015年   3篇
  2014年   3篇
  2013年   7篇
  2012年   11篇
  2011年   6篇
  2010年   8篇
  2009年   4篇
  2008年   7篇
  2007年   14篇
  2006年   5篇
  2005年   9篇
  2004年   6篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1973年   1篇
  1971年   1篇
  1968年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
1.
We study the v-adic distance from the torsion of a Drinfeld module to an affine variety.  相似文献   
2.
Fe-substituted MCM-41 molecular sieves with ca. 1, 2, and 3 wt % Fe were synthesized hydrothermally using different sources of colloidal silica (HiSil and Cab-O-Sil) and characterized by ICP, XRD, N2 physisorption, UV-vis, EPR, TPR, and X-ray absorption. Catalysts synthesized from Cab-O-Sil showed higher structural order and stability than those from HiSil. The local environment of Fe in the mesoporous material as studied by UV-vis reveals the dominance of framework Fe in all the as-synthesized Fe-MCM-41 samples. Dislodgement of some Fe species to extraframework location occurs upon calcination, and this effect is more severe for Fe-MCM-41 (2 wt %) and Fe-MCM-41 (3 wt %), as confirmed by EPR and X-ray absorption. These materials have been used as catalytic templates for the production of carbon nanotubes (CNTs) by acetylene pyrolysis at atmospheric pressure. A relationship between the Fe loading in MCM-41 and the carbon species produced during this reaction has been established. Using our optimized conditions for this system, Fe-MCM-41 with ca. 2 wt % Fe showed the best results with particularly high selectivity for single-wall carbon nanotube (SWNT) production. This catalyst was selective for carbon nanotubes with a low amount of amorphous carbon for a narrow range of temperatures from 1073 to 1123 K. To account for the different selectivity of these catalysts for CNTs production, the local environment and chemical state of Fe in the used catalyst was further probed by X-band EPR.  相似文献   
3.
Highly ordered Ni-MCM-41 samples with nearly atomically dispersed nickel ions were prepared reproducibly and characterized. Similar to the Co-MCM-41 samples, the pore diameter and porosity can be precisely controlled by changing the synthesis surfactant chain length. Nickel was incorporated by isomorphous substitution of silicon in the MCM-41 silica framework, which makes the Ni-MCM-41 a physically stable catalyst in harsh reaction conditions such as CO disproportionation to single wall carbon nanotubes or CO2 methanation. X-ray absorption spectroscopy results indicate that the overall local environment of nickel in Ni-MCM-41 was a tetrahedral or distorted tetrahedral coordination with surrounding oxygen anions. Hydrogen TPR revealed that our Ni-MCM-41 samples have high stability against reduction; however, compared to Co-MCM-41, the Ni-MCM-41 has a lower reduction temperature, and both the H2-TPR and in situ XANES TPR reveal that the reducibility of nickel is not clearly correlated with the pore radius of curvature, as in the case of Co-MCM-41. This is probably a result of nickel being thermodynamically more easily reduced than cobalt. The stability of the structural order of Ni-MCM-41 has been investigated under SWNT synthesis and CO2 methanation reaction conditions as both require catalyst exposure to reducing environments leading to formation of metallic Ni clusters. Nitrogen physisorption and XRD results show that structural order was maintained under both SWNT synthesis and CO2 methanation reaction conditions. EXAFS results demonstrate that the nickel particle size can be controlled by different prereduction temperatures but not by the pore radius of curvature as in the case of Co-MCM-41.  相似文献   
4.
During and following the processing of a plant’s raw material, considerable amounts are wasted, composted, or redistributed in non-alimentary sectors for further use (for example, some forms of plant waste contribute to biofuel, bioethanol, or biomass production). However, many of these forms of waste still consist of critical bioactive compounds used in the food industry or medicine. Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders. The primary treatment is based on symptomatology alleviation and controlled dietary management. Thus, this review aimed to describe the possible relevance of molecules residing in plant waste that can be used to manage IBS and co-occurring symptoms. Significant evidence was found that many forms of fruit, vegetable, and medicinal plant waste could be the source of some molecules that could be used to treat or prevent stool consistency and frequency impairments and abdominal pain, these being the main IBS symptoms. While many of these molecules could be recovered from plant waste during or following primary processing, the studies suggested that enriched food could offer efficient valorization and prevent further changes in properties or stability. In this way, root, stem, straw, leaf, fruit, and vegetable pomaces were found to consist of biomolecules that could modulate intestinal permeability, pain perception, and overall gastrointestinal digestive processes.  相似文献   
5.
A new type of CuII ion sorbents is presented. These are obtained by CaCO3 mineralization from supersaturated solutions on gel‐like cross‐linked polymeric beads as insoluble templates. A divinylbenzene–ethylacrylate–acrylonitrile cross‐linked copolymer functionalized with weakly acidic, basic, or amphoteric functional groups has been used, as well as different initial inorganic concentrations and addition procedures for CaCO3 crystal growth. The morphology of the new composites was investigated by SEM and compared to that of the unmodified beads, and the polymorph content was established by X‐ray diffraction. The beads, before and after CaCO3 mineralization, were tested as sorbents for CuII ions. The newly formed patterns on the bead surface after CuII sorption were observed by SEM, and the elemental distribution on the composites and the chemical structure of crystals after interaction with CuII were investigated by EDAX elemental mapping and by FTIR‐ATR spectroscopy, respectively. The sorption capacity increased significantly after CaCO3 crystals growth on the weak anionic bead surface (up to 1041.5 mg CuII/g sample) compared to that of unmodified beads (491.5 mg CuII/g sample).  相似文献   
6.
The cross-linking of polymerisable liquid crystalline semiconductors is a promising approach to solution-processable, multilayer, organic photovoltaics. Here we demonstrate an organic bilayer photovoltaic with an insoluble electron-donating layer formed by cross-linking a nematic reactive mesogen. We investigate a range of perylene diimide (PDI) materials, some of which are liquid crystalline, as the overlying electron acceptor layer. We find that carrier mobility of the acceptor materials is enhanced by liquid crystallinity and that mobility limits the performance of photovoltaic devices.  相似文献   
7.
Particles dispersed on the surface of oxide supports have enabled a wealth of applications in electrocatalysis, photocatalysis, and heterogeneous catalysis. Dispersing nanoparticles within the bulk of oxides is, however, synthetically much more challenging and therefore less explored, but could open new dimensions to control material properties analogous to substitutional doping of ions in crystal lattices. Here we demonstrate such a concept allowing extensive, controlled growth of metallic nanoparticles, at nanoscale proximity, within a perovskite oxide lattice as well as on its surface. By employing operando techniques, we show that in the emergent nanostructure, the endogenous nanoparticles and the perovskite lattice become reciprocally strained and seamlessly connected, enabling enhanced oxygen exchange. Additionally, even deeply embedded nanoparticles can reversibly exchange oxygen with a methane stream, driving its redox conversion to syngas with remarkable selectivity and long term cyclability while surface particles are present. These results not only exemplify the means to create extensive, self‐strained nanoarchitectures with enhanced oxygen transport and storage capabilities, but also demonstrate that deeply submerged, redox‐active nanoparticles could be entirely accessible to reaction environments, driving redox transformations and thus offering intriguing new alternatives to design materials underpinning several energy conversion technologies.  相似文献   
8.
The classical nucleation theory (CNT) is the most common theoretical framework used to explain particle formation. However, nucleation is a complex process with reaction pathways which are often not covered by the CNT. Herein, we study the formation mechanism of copper nanospheres using in situ X‐ray absorption and scattering measurements. We reveal that their nucleation involves coordination polymer lamellae as pre‐nucleation structures occupying a local minimum in the reaction energy landscape. Having learned this, we achieved a superior monodispersity for Cu nanospheres of different sizes. This report exemplifies the importance of developing a more realistic picture of the mechanism involved in the formation of inorganic nanoparticles to develop a rational approach to their synthesis.  相似文献   
9.
10.
We prove that if nonlinear complex polynomials of the same degree have orbits with infinite intersection, then the polynomials have a common iterate. We also prove a special case of a conjectured dynamical analogue of the Mordell–Lang conjecture. Mathematics Subject Classification (1991) Primary 14G25; Secondary 37F10, 11C08  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号