首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   3篇
化学   70篇
晶体学   1篇
力学   5篇
数学   5篇
物理学   40篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2015年   3篇
  2014年   3篇
  2013年   6篇
  2012年   7篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   9篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   2篇
  1974年   3篇
  1970年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
1.
2.
3.
A novel asymmetric, edge-sharing bioctahedral complex with formamidinato ligands ( 2-DAniF)Mo(-DAniF)2(-O,Cl)MoCl2, 1, (DAniF=N,N-di-p-anisylformamidinate) has been isolated as a byproduct from the preparation of the dimolybdenum(II,III) compound Mo2(DAniF)3Cl2. An X-ray crystallographic study shows that the structure consists of edge-sharing bioctahedra, with the shared edge defined by the vector joining the: -O and -Cl ligands. Compound 1 is best formulated as a mixed-valent MoIIIMoV compound, the Mo(V) ion being that with the two terminal Cl ligands. The cyclic voltammogram of 1 shows a reversible reduction at –0.472 V and a reversible oxidation at 1.028 V vs. the Ag/AgCl reference electrode, while the absorption spectrum of 1 reveals an intense low energy absorption at 523 nm ( max=12 500) which is attributed to an intervalence charge transfer transition. Crystallographic data for 1 are as follows: a=13.387(1) Å, b=15.500(2) Å, c=21.855(2) Å, =98.786(2)°, V=4481.8(8) Å3, P21/c, R1 (wR2)=0.082 (0.177).  相似文献   
4.
Reactions of W(CO)(6) with formamidines contrast with those of Mo(CO)(6) and Cr(CO)(6) in that the former do not yield quadruply bonded dimetal species. From the reaction of W(CO)(6) with HDAniF (HDAniF = N,N'-di-p-anisylformamidine), several new ditungsten carbonyl compounds (W(2)(mu-CO)(2)(mu-DAniF)(2)(eta(2)-DAniF)(2) (1), W(2)(mu-CO)(2)(mu-DAniF)(2)(eta(2)-DAniF)(eta(2)-CH(2)DAniF) (2), and W(2)(mu-CO)(mu-CNC(6)H(4)OCH(3))(mu-DAniF)(2)(eta(2)-DAniF)(2) (3)) have been isolated and fully characterized. In 2, CH(2)DAniF represents a DAniF ligand in which a methylene group has been added to one of the nitrogen atoms. This ligand binds to the tungsten atom using a nitrogen and a carbon atom. Compound 1 has a tungsten-tungsten bond distance of 2.476(1) A and a planar W(2)(mu-CO)(2) core structure which has C(2)(h)() symmetry with short and long W-C bond distances (1.99(1) and 2.28(1) A, respectively). DFT calculations on a model of 1 indicate that (a) the C(2)(h)() instead of D(2)(h)() symmetry of the ditungsten core may be attributed to W --> CO pi back-bonding interactions and (b) the bond between the tungsten atoms may be formulated as a double bond. The new tetragonal paddlewheel compound W(2)(DAniF)(4) (4) and the edge-sharing bioctahedron W(2)(mu-O)(mu-NC(6)H(3)Cl(2))(mu-D(Cl)PhF)(2)(eta(2)-D(Cl)PhF)(2) (5) (D(Cl)PhF = N,N'-di-(3,5-dichlorophenyl)formamidinate) have also been prepared.  相似文献   
5.
A series of aliphatic and aromatic carboxylic acids reacted with 2,3-dioctylaziridine to yield β-hydroxyalkyl amides in 69–89% yields and 2-substituted 4,5-di-n-octyl-δ2-oxazolines in amounts ranging from traces to 12% of the theoretical. No correlation could be found between carboxylic acid strength and either hydroxyamide or δ2-oxazoline yields. Solvents affected the product distribution.  相似文献   
6.
7.
8.
9.
A series of di- and trisilanes of general structure Ph3SiSiMe2R and (Ph3Si)2SiR′R″ were synthesized, and the 29Si and 13C chemical shifts and one-bond siliconsilicon coupling constants (1JSiSi) were measured. The coupling constants of the disilanes were found to be primarily dependent upon the inductive effect of the alkyl group, R, as measured by the Taft o constant. In both series of compounds, increasing alkyl substitution at silicon led to a decrease in 1JSiSi.  相似文献   
10.
ABSTRACT: BACKGROUND: The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). RESULTS: The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0--20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. CONCLUSIONS: The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号