首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   5篇
物理学   1篇
  2020年   1篇
  2004年   2篇
  2003年   3篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
The behavior of protonated binary solvents injected into deuterated binary mobile phases in capillary LC is studied with NMR. Specifically, the solvent elution is followed on-flow with a capillary LC coupled to a 900 nL volume microcoil NMR probe. A range of identical composition 5% protonated (and 95% deuterated) solvents is injected into composition-matched deuterated mobile phases of CD(3)CN/D(2)O and CD(3)OD/D(2)O. The protonated components separate for all solvent combinations except at 80% CD(3)CN/20% D(2)O and similar to 72% CD(3)OD/28% D(2)O where only a single retention time is observed. The more hydrophilic protonated component, HOD, elutes first with higher percentages of hydrophilic solvent, D(2)O, in the mobile phase whereas retention is reversed with the higher percentage of the more hydrophobic solvent (CD(3)CN and CD(3)OD) in the mobile phase. The hydrophilic/hydrophobic nature of the chromatographic system as a function of mobile phase composition is characterized by following the retention times of protonated solvents.  相似文献   
2.
3.
A solvent compensation method based on flow injection analysis is used to obtain high quality nuclear magnetic resonance (NMR) spectra during solvent gradients. Using a binary solvent system containing D2O and CD3OD, NMR line broadening and chemical shift changes are observed with a 10% methanol per min solvent composition gradient. However, by creating a second equal but reverse gradient and combining the two solvent gradients before the NMR detector, the composition of solvent reaching the NMR flow cell is kept constant. We demonstrate a system using flow injection analysis of combining solvent gradients and show constant NMR spectral performance as a function of time as the combined flow has a constant solvent composition irrespective of the initial solvent gradient. Using this approach, methods can be developed to measure high quality NMR spectra during on-flow gradient LC-NMR experiments. The ultimate ability of this approach depends on the ability to compensate for the disturbance of the solvent gradient and reverse gradient by a pair of LC columns (the analytical and reverse gradient columns).  相似文献   
4.
On-line cITP–NMR with chiral selectors separates and concentrates analytes and identifies host–guest interactions of analytes with selectivity enhancers in the electrolyte. An NMR microcoil designed for a 200 m i.d. capillary creates a high-mass-sensitivity 30 nL NMR cell and is used as an on-line detector for cITP. Using a mixture of 2 nmol racemic alprenolol in acetate buffer with -cyclodextrin and sulfated -cyclodextrin at pD 6.0, cITP–NMR successfully separates and concentrates both R- and S-alprenolol. The concentration enhancement for the R isomer is 224-fold and for the S isomer is 200-fold. The estimated concentration at peak maximum for R-alprenolol is ~28 mmol L–1 and a slightly lower concentration, 25 mmol L–1 is achieved for S-alprenolol. These concentrations convert to placing 76% of the injected S-alprenolol and 84% of the R-alprenolol into the 30 nL detection cell at peak maximum. With on-flow cITP–NMR, intermolecular interactions between the cyclodextrins and the alprenolol are observed in the NMR spectra. Aromatic and methyl moieties of R- and S-alprenolol are identified as two important sites that bind with these particular cyclodextrins.  相似文献   
5.
The hyphenation of small-volume separations to information-rich detection offers the promise of unmatched analytical information on the components of complex mixtures. Nuclear magnetic resonance (NMR) spectroscopy provides information about molecular structure, although sensitivity remains an issue for on-line NMR detection. This is especially true when hyphenating NMR to capillary separations as the observation time and analyte mass are decreased to the point where reduced information is obtained from the eluting analytes. Because of these limitations, advances in instrumental performance have a large impact on the overall performance of a separation–NMR system. Instrumental aspects and the capabilities of cLC–NMR, CEC–NMR and CE–NMR are reviewed, and applications that have used this technology highlighted. Recent trends towards small volume capillary scale separations are emphasized, as is the recent success of capillary-isotachophoresis (cITP)–NMR.  相似文献   
6.
Favourable band alignment and excellent visible light response are vital for photochemical water splitting. In this work, we have theoretically investigated how ferroelectric polarization and its reversibility in direction can be utilized to modulate the band alignment and optical absorption properties. For this objective, 2D van der Waals heterostructures (HTSs) are constructed by interfacing monolayer MoS2 with ferroelectric In2Se3. We find the switch of polarization direction has dramatically changed the band alignment, thus facilitating different type of reactions. In In2Se3/MoS2/In2Se3 heterostructures, one polarization direction supports hydrogen evolution reaction and another polarization direction can favour oxygen evolution reaction. These can be used to create tuneable photocatalyst materials where water reduction reactions can be selectively controlled by polarization switching. The modulation of band alignment is attributed to the shift of reaction potential caused by spontaneous polarization. Additionally, the formed type-II van der Waals HTSs also significantly improve charge separation and enhance the optical absorption in the visible and infrared regions. Our results pave a way in the design of van der Waals HTSs for water splitting using ferroelectric materials.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号