首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学   3篇
力学   1篇
数学   2篇
物理学   10篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2012年   2篇
  2008年   2篇
  2007年   1篇
  2003年   1篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
2.
Perforated concrete shows nowadays a high potential for many construction and building engineering applications. This work is devoted to the analysis of the acoustic properties of perforated concrete made from arlite lightweight aggregates. Concrete produced from these materials is an environmentally friendly alternative to traditional materials and offers a higher durability, excellent strength-to-weight ratio and low cost. In particular, it is shown that the acoustic behavior of perforated concrete can be modeled using a dual porosity approach based on the knowledge of the non-acoustic properties of the matrix granular material and geometrical data. To this end, various non-perforated and perforated samples were prepared and characterized in an experimental test facility, their acoustic properties being determined through the transfer function impedance tube method. Experimental and estimated results related to the acoustic properties of a number of prepared specimens are presented, showing a good agreement. Results suggest that this approach is suitable for practical design of such materials as part of noise control systems.  相似文献   
3.
4.
5.
Computational fluid dynamics, where simulations require largecomputation times, is one of the areas of application of highperformance computing. Schemes such as the SIMPLE (semi-implicitmethod for pressure-linked equations) algorithm are often usedto solve the discrete Navier-Stokes equations. Generally theseschemes take a short time per iteration but require a largenumber of iterations. For simple geometries (or coarser grids)the overall CPU time is small. However, for finer grids or morecomplex geometries the increase in the number of iterationsmay be a drawback and the decoupling of the differential equationsinvolved implies a slow convergence of rotationally dominatedproblems that can be very time consuming for realistic applications.So we analyze here another approach, DIRECTO, that solves theequations in a coupled way. With recent advances in hardwaretechnology and software design, it became possible to solvecoupled Navier-Stokes systems, which are more robust but implyincreasing computational requirements (both in terms of memoryand CPU time). Two approaches are described here (band blockLU factorization and preconditioned GMRES) for the linear solverrequired by the DIRECTO algorithm that solves the fluid flowequations as a coupled system. Comparisons of the effectivenessof incomplete factorization preconditioners applied to the GMRES(generalized minimum residual) method are shown. Some numericalresults are presented showing that it is possible to minimizeconsiderably the CPU time of the coupled approach so that itcan be faster than the decoupled one.  相似文献   
6.
Railway interaction is characterised by the coupling between the train and the track introduced through the wheel/rail contact. The introduction of the flexibility in the wheelset and the track through the finite element (FE) method in the last four decades has permitted to study high-frequency phenomena such as rolling noise and squeal, whose origin lies in the strongly non-steady state and non-linear behaviour of the contact forces that arise from the small contact area. In order to address models with a large number of degrees of freedom, innovative Eulerian-modal models for wheelsets with rotation and cyclic tracks have been developed in recent years. The aim of this paper is to extend the resulting formulation to an uncoupled linear matrix equation of motion that allows solving each equation independently for each time step, considerably reducing the associated computational cost. The decoupling integration method proposed is compared in terms of computational performance with Newmark and Runge-Kutta schemes, commonly used in vehicle dynamics, for simulations with the leading wheelset negotiating a tangent track and accounting the rail roughness.  相似文献   
7.
An analytic mode matching scheme that includes higher order modes is developed for a straight-through circular dissipative silencer. Uniform mean flow is added to the central airway and a concentric perforated screen separates the mean flow from a bulk reacting porous material. Transmission loss predictions are compared with experimental measurements and good agreement is demonstrated for three different silencers. Furthermore, it is demonstrated that, when mean flow is present, the axial kinematic matching condition should equate to that chosen for the radial kinematic boundary condition over the interface between the airway and the material. Accordingly, if the radial matching conditions are continuity of pressure and displacement, then the axial matching conditions should also be continuity of pressure and displacement, rather than pressure and velocity as previously thought. When a perforated screen is present the radial pressure condition changes, but the radial kinematic condition should always remain equivalent to that chosen for the axial kinematic matching condition; here, results indicate that continuity of displacement should be retained when a perforated screen is present.  相似文献   
8.
This article presents a technique for modelling the dynamic response of rotating flexible solids with internal modal damping. The method is applicable to solids with geometry of revolution that rotate around their main axis at constant spinning velocity. The model makes use of an Eulerian modal coordinate system which adopts the vibration modes in a non-rotating frame as basis functions. Due to the coordinate system, the technique is particularly suitable for studying the dynamic interaction between rotating solids and non-rotating structures and permits to obtain Frequency Response Functions. The current investigation presents the development of the proposed technique from a previous Lagrangian model, and consequently the mathematical relationships between the two coordinate sets are found. The approach has been adopted to study the dynamics of a simply supported cylinder including damping in order to obtain the receptance function and the modal properties of the rotating solid.  相似文献   
9.
10.
The acoustic behavior of a circular dual-chamber muffler is investigated in detail by: (1) a two-dimensional (2-D) axisymmetric analytical approach based on the mode-matching technique for the concentric configurations; (2) the finite element method; and (3) experimental work. A number of effects is studied, including (1) the presence of a rigid baffle in the chamber; (2) the inner radius of the baffle; (3) the position of the baffle along the axial direction; and (4) the extended inlet/outlet and baffle ducts. Some of these effects are shown to modify the acoustic behavior drastically, suggesting potential means to improve the acoustic performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号