首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   7篇
化学   25篇
物理学   16篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   6篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1992年   1篇
  1991年   2篇
  1985年   1篇
  1977年   1篇
  1964年   1篇
  1963年   1篇
  1954年   2篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
The highly anisotropic material CsBi(4)Te(6) was prepared by the reaction of Cs/Bi(2)Te(3) around 600 degrees C. The compound crystallizes in the monoclinic space group C2/m with a = 51.9205(8) A, b = 4.4025(1) A, c = 14.5118(3) A, beta = 101.480(1) degrees, V = 3250.75(11) A(3), and Z = 8. The final R values are R(1) = 0.0585 and wR(2) = 0.1127 for all data. The compound has a 2-D structure composed of NaCl-type [Bi(4)Te(6)] anionic layers and Cs(+) ions residing between the layers. The [Bi(4)Te(6)] layers are interconnected by Bi-Bi bonds at a distance of 3.2383(10) A. This material is a narrow gap semiconductor. Optimization studies on the thermoelectric properties with a variety of doping agents show that the electrical properties of CsBi(4)Te(6) can be tuned to yield an optimized thermoelectric material which is promising for low-temperature applications. SbI(3) doping resulted in p-type behavior and a maximum power factor of 51.5 microW/cm.K(2) at 184 K and the corresponding ZT of 0.82 at 225 K. The highest power factor of 59.8 microW/cm.K(2) at 151 K was obtained from 0.06% Sb-doped material. We report here the synthesis, physicochemical properties, doping characteristics, charge-transport properties, and thermal conductivity. Also presented are studies on n-type CsBi(4)Te(6) and comparisons to those of p-type.  相似文献   
2.
We analyzed DNA duplexes modified at central guanine residues by monofunctional Ru(II) arene complexes [(eta(6)-arene)Ru(II)(en)(Cl)](+) (arene = tetrahydroanthracene or p-cymene, Ru-THA or Ru-CYM, respectively). These two complexes were chosen as representatives of two different classes of Ru(II) arene compounds for which initial studies revealed different binding modes: one that may involve DNA intercalation (tricyclic-ring Ru-THA) and the other (mono-ring Ru-CYM) that may not. Ru-THA is approximately 20 times more toxic to cancer cells than Ru-CYM. The adducts of Ru-THA and Ru-CYM have contrasting effects on the conformation, thermodynamic stability, and polymerization of DNA in vitro. In addition, the adducts of Ru-CYM are removed from DNA more efficiently than those of Ru-THA. Interestingly, the mammalian nucleotide excision repair system has low efficiency for excision of ruthenium adducts compared to cisplatin intrastrand crosslinks.  相似文献   
3.
4.
Bulk Zr0.25Hf075NiSn half-Heusler (HH) nanocomposites containing various mole fractions of full-Heusler (FH) inclusions were prepared by solid state reaction of pre-synthesized HH alloy with elemental Ni at 1073 K. The microstructures of spark plasma sintered specimens of the HH/FH nanocomposites were investigated using transmission electron microscopy and their thermoelectric properties were measured from 300 K to 775 K. The formation of coherent FH inclusions into the HH matrix arises from solid-state Ni diffusion into vacant sites of the HH structure. HH(1–y)/FH(y) composites with mole fraction of FH inclusions below the percolation threshold, y∼0.2, show increased electrical conductivity, reduced Seebeck coefficient and increased total thermal conductivity arising from gradual increase in the carrier concentration for composites. A drastic reduction (∼55%) in κl was observed for the composite with y=0.6 and is attributed to enhanced phonon scattering due to mass fluctuations between FH and HH, and high density of HH/FH interfaces.  相似文献   
5.
Large reductions in the thermal conductivity of thermoelectrics using nanostructures have been widely demonstrated. Some enhancements in the thermopower through nanostructuring have also been reported. However, these improvements are generally offset by large drops in the electrical conductivity due to a drastic reduction in the mobility. Here, we show that large enhancements in the thermopower and electrical conductivity of half-Heusler (HH) phases can be achieved simultaneously at high temperatures through coherent insertion of nanometer scale full-Heusler (FH) inclusions within the matrix. The enhancements in the thermopower of the HH/FH nanocomposites arise from drastic reductions in the "effective" carrier concentration around 300 K. Surprisingly, the mobility increases drastically, which compensates for the decrease in the carrier concentration and minimizes the drop in the electrical conductivity. Interestingly, the carrier concentration in HH/FH nanocomposites increases rapidly with temperature, matching that of the HH matrix at high temperatures, whereas the temperature dependence of the mobility significantly deviates from the typical T(-α) law and slowly decreases (linearly) with rising temperature. This remarkable interplay between the temperature dependence of the carrier concentration and mobility in the nanocomposites results in large increases in the power factor at 775 K. In addition, the embedded FH nanostructures also induce moderate reductions in the thermal conductivity leading to drastic increases in the ZT of HH(1 - x)/FH(x) nanocomposites at 775 K. By combining transmission electron microscopy and charge transport data, we propose a possible charge carrier scattering mechanism at the HH/FH interfaces leading to the observed anomalous electronic transport in the synthesized HH(1 - x)/FH(x) nanocomposites.  相似文献   
6.
Measurements of electrical resistivity ? and thermoelectric ratio G on air annealed reference grade Pt samples from 4 K down to 40 mK reveal ultra-low temperature anomalies in both properties. The observed T2 components of ? are consistent with values obtained by previous investigators from measurements above 1 K.  相似文献   
7.
The effects of applied pressure on graphite and its intercalation compounds are reviewed emphasizing the relationship between structure and transport properties. It has long been recognized that high pressure plays a crucial role in the polymorphic phase transitions of graphite, notably in the graphite-diamond transformation. More recent studies have revealed a wealth of pressure-induced phases associated with the unusual layer-stacking (‘staging’) mechanism in the intercalation compounds of graphite. The high degree of structural anisotropy associated with staging is strongly reflected in the electronic band structure and transport properties, and in the remarkable pressure dependence of the superconducting states of some of the graphite intercalation compounds. High pressure is shown to be a valuable means not only to realize new structural phases but also to improve our understanding of the fundamental behaviour of these important materials.  相似文献   
8.
Sublimation enthalpies of alkane-α,ω-diamines exhibit an odd-even pattern within their homologous series. First-principles calculations coupled with the quasi-harmonic approximation for crystals and with the conformation mixing model for the ideal gas are used to explain this phenomenon from the theoretical point of view. Crystals of the odd and even alkane-α,ω-diamines distinctly differ in their packing motifs. However, first-principles calculations indicate that it is a delicate interplay of the cohesive forces, phonons, molecular vibrations and conformational equilibrium which governs the odd-even pattern of the sublimation enthalpies within the homologous series. High molecular flexibility of the alkane-α,ω-diamines predetermines higher sensitivity of the computational model to the quality of the optimized geometries and relative conformational energies. Performance of high-throughput computational methods, such as the density functional tight binding (DFTB, GFN2-xTB) and the explicitly correlated dispersion-corrected Møller - Plesset perturbative method (MP2C-F12), are benchmarked against the consistent state-of-the-art calculations of conformational energies and interaction energies, respectively.  相似文献   
9.
10.
An experimental relationship between superconductivity, magnetism and localization is explored in short-wavelength (14Å ? ? ? 40Å) sputtered Mo/Ni superlattices. A crossover to a superconducting state is observed for ? < 9Å consistent with the observed paramagnetic behavior when the Ni strata are four atomic layers thick, or less. All samples show localization effects at helium temperatures and non-superconducting samples develop an unusual resistance plateau below T ? 0.5K.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号