首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   1篇
物理学   4篇
  2021年   1篇
  2014年   1篇
  2010年   2篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Free-carrier absorption (FCA) has proven to be an important obstacle in the development of a silicon-based laser; however, FCA may serve as a potential advantage in active silicon-based switches or modulators. In this work, we present FCA modulation in slot waveguides with silicon nanocrystals (Si-ncs) embedded in SiO(2) as the low-index slot material. Slot waveguides were fabricated with and without Si-ncs, and the presence of Si-ncs was shown to increase the pump-induced FCA loss in the waveguides by a factor of 4.5. We modeled the Si-nc material using a four-level rate equation analysis to estimate the excited population of Si-ncs, allowing us to extract a value of 2.6 × 10(-17) cm(2) for the FCA cross section of the Si-nc material.  相似文献   
2.
Broadband interferometry is an attractive technique for the detection of cellular motions because it provides depth-resolved phase information via coherence gating. We present a phase-sensitive technique called spectral-domain phase microscopy (SDPM). SDPM is a functional extension of spectral-domain optical coherence tomography that allows for the detection of nanometer-scale motions in living cells. The sensitivity of the technique is demonstrated, and its calibration is verified. A shot-noise limit to the displacement sensitivity of this technique is derived. Measurement of cellular dynamics was performed on spontaneously beating cardiomyocytes isolated from chick embryos.  相似文献   
3.
We report on the design, optimization and characterization of silicon nanocrystal microgear resonators. We present three-dimensional finite-difference time-domain simulations to optimize the gear geometry and guide our experimental study. We fabricated a series of microgears with varying geometry and compared their photoluminescence spectra to that of a reference microdisk. The microgears exhibited a single dominant mode in the photoluminescence spectrum with quality factors as high as 103. We further demonstrated the ability to tune the wavelength of the dominant mode by changing the number of gear teeth and thereby selecting a mode with a different azimuthal order.  相似文献   
4.
Notwithstanding that RuO2 is a promising catalyst for the oxygen evolution reaction (OER), a plethora of fundamental details on its catalytic properties are still elusive, severely limiting its large-scale deployment. It is also established experimentally that corrosion and wettability of metal oxides can, in fact, enhance the catalytic activity for OER owing to the formation of a hydrated surface layer. However, the mechanistic interplay between surface wettability, interfacial water dynamics and OER across RuO2, and what degree these processes are correlated are still debated. Herein, spin-polarized Density Functional Theory Molecular Dynamics (DFT-MD) simulations, coupled with advanced enhanced sampling methods in the well-tempered metadynamics framework, are applied to gain a global understanding of RuO2 aqueous interface (explicit water solvent) in catalyzing the OER, and hence possibly help in the design of novel catalysts in the context of photochemical water oxidation. The present study quantitatively assesses the free-energy barriers behind the OER at the (110)-RuO2 catalyst surface revealing plausible pathways composing the reaction network of the O2 evolution. In particular, OER is investigated at room temperature when such a surface is exposed to both gas-phase and liquid-phase water. Albeit a unique efficient pathway has been identified in the gas-phase OER, a surprisingly lowest-free-energy-requiring reaction route is possible when (110)-RuO2 is in contact with explicit liquid water. By estimating the free-energy surfaces associated to these processes, we reveal a noticeable water-assisted OER mechanism which involves a crucial proton-transfer-step assisted by the local water environment. These findings pave the way toward the systematic usage of DFT-MD coupled with metadynamics techniques for the fine assessment of the activity of catalysts, considering finite-temperature and explicit-solvent effects.  相似文献   
5.
Renal cell carcinoma (RCC) accounts for 85% of all primary renal cancers. The definitive diagnosis of RCC relies exclusively on the subjective pathological interpretation of the surgical specimen. In this study, we aimed to analyze renal tissue using objective Raman spectroscopy (RS). We obtained 15 pairs of RCC (T) and corresponding normal renal parenchymal tissues (N) from our biobank. There are three subtypes of RCC: clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC (cRCC). Five pairs of tissue of each subtype were enrolled. Fresh‐frozen sliced tissues were used for the RS detection. The Raman spectra between T and N were compared and analyzed using partial least squares (PLS) regression. Data for a total of 55 T and 58 N analyzable RS samples were obtained. The spectra were normalized by dividing the intensity of the characteristic peak at 1003 cm−1 using phenylalanine's Raman peak. After further analysis with PLS, the sensitivity and specificity for discriminating T from N were 95% and 93%, respectively. The RCC subtypes can be discriminated at an accuracy of 72% for ccRCC, 88% for cRCC, and 86% for pRCC. This study demonstrates the feasibility of analyzing renal tissue using RS. RS, with its advantages of easy and objective tissue assessment, may be applied to aid intraoperative decision making and pathological tissue assessment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号