首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   0篇
化学   22篇
力学   1篇
数学   9篇
物理学   56篇
  2015年   1篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   7篇
  1999年   6篇
  1998年   3篇
  1996年   7篇
  1995年   3篇
  1994年   10篇
  1993年   6篇
  1992年   4篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有88条查询结果,搜索用时 31 毫秒
1.
The control of complex, unsteady flows is a pacing technology for advances in fluid mechanics. Recently, optimal control theory has become popular as a means of predicting best case controls that can guide the design of practical flow control systems. However, most of the prior work in this area has focused on incompressible flow which precludes many of the important physical flow phenomena that must be controlled in practice including the coupling of fluid dynamics, acoustics, and heat transfer. This paper presents the formulation and numerical solution of a class of optimal boundary control problems governed by the unsteady two‐dimensional compressible Navier–Stokes equations. Fundamental issues including the choice of the control space and the associated regularization term in the objective function, as well as issues in the gradient computation via the adjoint equation method are discussed. Numerical results are presented for a model problem consisting of two counter‐rotating viscous vortices above an infinite wall which, due to the self‐induced velocity field, propagate downward and interact with the wall. The wall boundary control is the temporal and spatial distribution of wall‐normal velocity. Optimal controls for objective functions that target kinetic energy, heat transfer, and wall shear stress are presented along with the influence of control regularization for each case. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
2.
3.
4.
Use of the bulky cyclopentadienyl ligand [η5-C5H2(SiMe3)3-1,2,4] (Cp?) allows for the isolation of monomeric, mono-ring lanthanide species. As previously reported, (Cp?)K reacts with LaI3(THF)4 (THF=tetrahydrofuran) in THF/pyridine to form the mono-ring complex (Cp?)LaI2(py)3 (1) (py=pyridine); a minor product of this reaction is the bis-ring species (Cp?)2LaI(py) (2). The solid state structure of 2 reveals a monomeric compound containing a pseudo-tetrahedral metal center exhibiting no unusual intramolecular contacts. Addition of one equiv of KNHAr (Ar=2,6-iPr2C6H3) to complex 1 in THF generates the mono-anilido compound (Cp?)LaI(NHAr)(THF)2 (3), which may be converted to the more stable pyridine adduct (Cp?)LaI(NHAr)(py)2 (4) by the addition of pyridine to 3. An X-ray crystal structure of 3 indicated a trigonal bipyramidal metal center with the anilido group oriented trans to the iodide atom (N1-La1-I1=123.1(3)°). A structural study on the bis-pyridine adduct 4 revealed a similar Cs-symmetric structure with a slightly increased Nanilido-La-I angle of 132.1(2)°. Addition of KNHAr to the di-iodo bipyridine adduct (Cp?)LaI2(bipy)(py) (5), in which the two iodide atoms are cis-disposed, yields the mono-anilido complex (Cp?)LaI(NHAr)(bipy)(py) (6) (bipy=2,2-bipyridine); this compound may also be prepared by the addition of bipy to (Cp?)LaI(NHAr)(py)2 (4). An X-ray diffraction study shows that the lanthanum center in 6 is octahedrally coordinated by a Cp? ring, an iodide, an anilido group, a pyridine molecule and two nitrogens of a bipy molecule. In this case, the anilido moiety and the iodide ligand are arranged in a cis fashion (Nanilido-La-I=111.2(2)°), resulting in a complex with C1 symmetry. Both (Cp?)LaI(NHAr)(py)2 (4) and (Cp?)LaI(NHAr)(bipy)(py) (6) are inactive as catalysts for the hydroamination/cyclization of 2-amino-hex-5-ene.  相似文献   
5.
A general three-step synthesis to a range of benzo-fused-1,3,2-dithiazolylium salts bearing both electron-withdrawing (CN) and electron-donating (Me) groups is described. This methodology has also been extended to pyridyl derivatives and offers a potential route to a diversity of 1,3,2-dithiazolylium rings and their corresponding 1,3,2-dithiazolyl free radicals. The key steps in the reaction are treatment of a substituted 1,2,-dichlorobenzene with two equivalents of [tBuS]Na, followed by chlorination to yield the corresponding bis(sulfenyl chloride). Subsequent ring closure with Me3SiN3 yields the target 1,3,2-dithiazolylium ring system in good yield. The preparation and crystal structures of 3′-methyl-benzo-1,3,2-dithiazolylium chloride and 3′-methyl-benzo-1,3,2-dithiazolyl are described and the electronic properties of the radical examined through EPR spectroscopy, DFT calculations and variable temperature magnetic susceptibility measurements.  相似文献   
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号