首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   1篇
  国内免费   2篇
化学   128篇
力学   2篇
数学   24篇
物理学   11篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   6篇
  2019年   5篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   4篇
  2014年   13篇
  2013年   23篇
  2012年   11篇
  2011年   8篇
  2010年   8篇
  2009年   9篇
  2008年   11篇
  2007年   9篇
  2006年   8篇
  2005年   5篇
  2004年   7篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有165条查询结果,搜索用时 187 毫秒
1.
The Friedel-Crafts acylations of various aromatic compounds with cyclic anhydrides such as 2-(p-substituted phenyl)butanedioic, 3-phenylpentanedioic and homophathlic anhydrides were carried out under various conditions in order to obtain informations about the regioselectivity of the ring opening of the cyclic anhydrides and about the possible reaction pathways in the acylations.  相似文献   
2.
The complexes of the type M(HDMBG)2(CH3COO)2·nH2O ((1) M:Mn, n=1.5; (2) M:Ni, n=0; (3) M:Cu, n=2; (4) M:Zn, n=2; DMBG: N,N-dimethylbiguanide) present in vitro antimicrobial activity. The thermal analysis has evidenced the thermal intervals of stability and also the thermodynamics effects that accompany them. The different nature of the ligands generates a different thermal behaviour for the complexes. The thermal transformations are complex processes according to TG and DTG curves including dehydration, oxidative condensation of –C=N– units as well as thermolysis processes. The final products of decomposition are the most stable metal oxides.  相似文献   
3.
Experimentally developed ceramic pots, with two different sizes of grain, were half-filled with wine and subjected to thermal alteration at constant elevated temperature ((60 ± 2)°C) in darkness for 12 weeks. This work sought to characterise the samples thereby obtained from chemical and mineralogical perspectives using scanning electron microscopy and an energy-dispersive X-ray microanalysis system (SEM-EDX), Fourier transform infrared spectroscopy (FTIR) and capillary electrophoresis (CE) with UV detection as an alternative to chromatographic methods, due to its good resolution, automation, simplicity, high speed, low consumption of chemicals and short time required for sample preparation. The capillary electrophoresis method was used for the detection of five wine biomarkers: succinic acid, malic acid, tartaric acid, citric acid and lactic acid. In general, it was noted that the fine-grained ceramic assortment retained the organic material better than the coarser-grained ceramics. An interesting observation derived from this study was that not only could tartaric acid be considered as a biomarker for wine residues in archaeological pottery, but malic acid could also act similarly for white wine and lactic acid for red wine.  相似文献   
4.
This work honors the 75th birthday of Professor Ionel Michael Navon by presenting original results highlighting the computational efficiency of the adjoint sensitivity analysis methodology for function‐valued operator responses by means of an illustrative paradigm dissolver model. The dissolver model analyzed in this work has been selected because of its applicability to material separations and its potential role in diversion activities associated with proliferation and international safeguards. This dissolver model comprises eight active compartments in which the 16 time‐dependent nonlinear differential equations modeling the physical and chemical processes comprise 619 scalar and time‐dependent model parameters, related to the model's equation of state and inflow conditions. The most important response for the dissolver model is the time‐dependent nitric acid in the compartment furthest away from the inlet, where measurements are available at 307 time instances over the transient's duration of 10.5 h. The sensitivities to all model parameters of the acid concentrations at each of these instances in time are computed efficiently by applying the adjoint sensitivity analysis methodology for operator‐valued responses. The uncertainties in the model parameters are propagated using the above‐mentioned sensitivities to compute the uncertainties in the computed responses. A predictive modeling formalism is subsequently used to combine the computational results with the experimental information measured in the compartment furthest from the inlet and then predict optimal values and uncertainties throughout the dissolver. This predictive modeling methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution for the a priori known mean values and uncertainties characterizing the model parameters and the computed and experimentally measured model responses. This approximate a priori distribution is subsequently combined using Bayes' theorem with the “likelihood” provided by the multi‐physics computational models. Finally, the posterior distribution is evaluated using the saddle‐point method to obtain analytical expressions for the optimally predicted values for the parameters and responses of both multi‐physics models, along with corresponding reduced uncertainties. This work shows that even though the experimental data pertains solely to the compartment furthest from the inlet (where the data were measured), the predictive modeling procedure used herein actually improves the predictions and reduces the predicted uncertainties for the entire dissolver, including the compartment furthest from the measurements, because this predictive modeling methodology combines and transmits information simultaneously over the entire phase‐space, comprising all time steps and spatial locations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
5.
Novel complexes of type M2LCl4·nH2O (M: Ni, n = 4; M: Cu, n = 2.5 and M: Zn, n = 1.5; L: ligand resulted from 1,3-phenylenediamine, 3,6-diazaoctane-1,8-diamine, and formaldehyde one-pot condensation) were synthesized and characterized. The ligand was also isolated and characterized. The complexes features have been assigned from microanalytical, electrospray ionization tandem mass spectrometry, IR, UV–vis, 1H NMR, and EPR spectra as well as magnetic data at room temperature. Simultaneous thermogravimetric/dynamic scanning calorimetry/evolved gas analysis measurements were performed to evidence the nature of the gaseous products formed in each step. Processes as water elimination, fragmentation, and oxidative degradation of the organic ligand as well as chloride elimination were observed during the thermal decomposition. The final product of decomposition was metal(II) oxide except for copper complex where CuCl remained also in the oxide network. The complexes exhibited an improved antibacterial activity in comparison with the ligand concerning both planktonic as well as biofilm-embedded cells.  相似文献   
6.
The safe use of lipid‐based drug delivery agents requires fast and sensitive qualitative and quantitative assessment of their cellular interactions. Many mass spectrometry (MS) based analytical platforms can achieve such task with varying capabilities. Therefore, four novel high‐throughput MS‐based quantitative methods were evaluated for the analysis of a small organic gene delivery agent: N,N‐bis(dimethylhexadecyl)‐1,3‐propane‐diammonium dibromide (G16‐3). Analysis utilized MS instruments that detect analytes using low‐resolution tandem MS (MS/MS) analysis (i.e. QTRAP or linear ion trap in this work) or high‐resolution MS analysis (i.e. time of flight (ToF) or Orbitrap). Our results indicate that the validated fast chromatography (FC)‐QTRAP‐MS/MS, FC‐ LTQ‐Orbitrap‐MS, desorption electrospray ionization‐collision‐induced dissociation (CID)‐MS/MS and matrix assisted laser desorption ionization‐ToF/ToF‐MS MS methods were superior in the area of method development and sample analysis time to a previously developed liquid chromatography (LC)‐CID‐MS/MS. To our knowledge, this is the first evaluation of the abilities of five MS‐based quantitative methods that target a single pharmaceutical analyte. Our findings indicate that, in comparison to conventional LC‐CID‐MS/MS, the new MS‐based methods resulted in a (1) substantial reduction in the analysis time, (2) reduction in the time required for method development and (3) production of either superior or comparable quantitative data. The four new high‐throughput MS methods, therefore, were faster, more efficient and less expensive than a conventional LC‐CID‐MS/MS for the quantification of the G16‐3 analyte within tissue culture. When applied to cellular lysate, no significant change in the concentration of G16‐3 gemini surfactant within PAM212 cells was observed between 5 and 53 h, suggesting the absence of any metabolism/excretion from PAM212 cells. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
7.
Novel complexes of M2LCl4·nH2O type (M:Ni, n = 4; M:Cu, n = 3 and M:Zn, n = 0; L: ligand resulted from 1,4-phenylenediamine, 3,6-diazaoctane-1,8-diamine and formaldehyde one-pot condensation) were synthesized and characterised by microanalytical, ESI–MS, IR, UV–Vis, 1H NMR and EPR spectra, magnetic data at room temperature and molar conductivities as well. The electrochemical behaviour of complexes was investigated by cyclic voltammetry. Simultaneous TG/DTA measurements were performed in order to evidence the thermal behaviour of the obtained complexes. Processes such as water elimination, fragmentation and oxidative degradation of the organic ligand as well as chloride elimination occurred during thermal decomposition. The antimicrobial assays demonstrate that the compounds exhibited good antibacterial activity, especially against S. aureus and E. coli strains, the most active being the copper(II) complex, which also exhibited the most prominent anti-biofilm effect, suggesting its potential use for the development of new antimicrobial agents. The biological activity was correlated with log P ow values. All complexes disrupt the membrane integrity of HCT 8 tumour cells.  相似文献   
8.
A series of complexes of type [ML(CH3COO)(OH2)2] (M: Co, Ni; HL: 2-[(E)-1H-1,2,4-triazol-3-ylimino)methyl]phenol)) and [M2L2(CH3COO)2(OH2)n] (M: Cu, n = 2; M: Zn, n = 0) were synthesised by template condensation. The compounds were characterised with microanalytical, ESI–MS, IR, electronic, EPR spectra and magnetic data at room temperature. Based on the IR and ESI–MS spectra, a dinuclear structure with the acetate as bridge was proposed for Cu(II) and Zn(II) complexes. The dinuclear structure of Cu(II) complex is also consistent with both magnetic behaviour and EPR spectrum. The thermal analyses have evidenced processes as water elimination, acetate decomposition, as well as oxidative degradation of the Schiff base. The final decomposition product was the most stable metal oxide as indicated by powder X-ray diffraction. The cobalt and copper compounds exhibited a broad spectrum of antibacterial activity towards both planktonic and biofilm-embedded cells. The complexes exhibit a low cytotoxicity except for Cu(II) species that induces the early apoptosis for the HEp 2 cells.  相似文献   
9.
A series of new complexes with mixed ligands of the type [ML(C3H3O2)2nH2O (((1) M=Mn, n=1; (2) M=Co(II), n=2; (3) M=Ni(II), n=4; (4) M=Cu(II), n=1.5; (5) M=Zn(II), n=0; L=3-amino-1,2,4-triazole and (C3H3O2)=acrylate anion) were synthesized and characterised by chemical analysis and IR data. In all complexes the 3-amino-1,2,4-triazole acts as bridge while the acrylate acts as bidentate ligand except for complex (5) where it is found as unidentate. The thermal behaviour steps were investigated in nitrogen flow. The thermal transformations are complex processes according to TG and DTG curves including dehydration, acrylate ion and 3-amino-1,2,4-triazole degradation respectively. The final products of decomposition are the most stable metal oxides, except for complex (4) that leads to metallic copper.  相似文献   
10.
Three new complexes with ligands belong to the fluoroquinolone class having the general formula [RuL2Cl2]Cl nH2O ((1) L: norfloxacin (nf), n = 4; (2) L: ciprofloxacin (cp), n = 3; (3) L: enrofloxacin (enro), n = 5) were synthesized and characterized by chemical analysis UV–Vis and IR spectroscopy. In all complexes fluoroquinolone derivative acts as bidentate chelate ligand. The thermal behavior steps were investigated in synthetic air flow. The thermal transformations are complex processes according to TG and DTG curves including dehydration, quinolone derivative degradation, as well as RuCl3 conversion in RuO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号