首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   6篇
  国内免费   1篇
化学   39篇
数学   10篇
物理学   26篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2016年   4篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   8篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   8篇
  2005年   3篇
  2004年   2篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1993年   3篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1966年   1篇
排序方式: 共有75条查询结果,搜索用时 31 毫秒
1.
2.
Summary The methylmercury concentrations in three existing marine biological certified reference materials — TORT-1, DORM-1 and DOLT-1 — are determined by gas chromatography with electron capture detection, cold vapour atomic absorption spectrometry and inductively coupled plasma mass spectrometry after selective isolation of methylmercury. Two such procedures were used. These and the three analytical techniques are evaluated and compared. The certified methylmercury concentrations are: TORT-1, 0.128 ± 0.014; DORM-1, 0.731±0.060; and DOLT-1, 0.080 ± 0.011 g Hg/g dry weight.
Meeresbioligische Referenzmaterialien für Methylquecksilber: Analytische Methoden der Zertifizierung
  相似文献   
3.
The evolving nature of a Stillinger-Weber modeled silicon glass is studied using two accelerated molecular dynamics scheme, specifically, hyperdynamics and self-guided algorithms due to Voter and due to Wu and Wang, respectively. We obtain an acceleration of the dynamics, a "boost," on the order of 20 without incurring any significant computational overhead. The validity of the results using accelerated methods is provided by comparison to a conventional molecular dynamics (MD) algorithm simulated under constant temperature conditions for more than 100 ns. We found that performing a sensitivity analysis of the effect of the parameters lambda and t1 before applying the self-guided MD scheme was important. Values of lambda greater than 0.1 and t1 equal to 1 ps were found to give improved structural evolution as compared to a conventional MD scheme. The hyperdynamics approximation scheme was found to be effective in obtaining boosts in the range of 4-12 for a small system without changing the dynamics of the evolution. However, for a large system size such an approach introduces significant perturbations to the pertinent equations of motion.  相似文献   
4.
5.
All-atom Molecular Dynamics simulation methods employing a well-tested intermolecular potential model, MM3 (Molecular Mechanics 3), demonstrate the propensity for diindenoperylene (DIP) molecules to insert between molecules of a self-assembled monolayer (SAM) during a deposition process intended to grow a thin film of this organic semiconductor molecule onto the surface of self-assembled monolayers. The tendency to insert between SAM molecules is fairly prevalent at normal growth temperatures and conditions, but is most strongly dependent on the density and the nature of the SAM. We posit the existence of an optimal density to favor surface adsorption over insertion for this system. DIP is less likely to insert in fluorinated SAMs, like FOTS (fluorooctatrichlorosilane), than its unfluorinated analog, OTS (octatrichlorosilane). It is also less likely to insert between shorter SAMs (e.g., less insertion in OTS than ODTS (octadecyltrichlorosilane)). Very short length, surface-coating molecules, like HDMS (hexamethyldisilazane), are more likely to scatter energetic incoming DIP molecules with little insertion on first impact (depending on the incident energy of the DIP molecule). Grazing angles of incidence of the depositing molecules generally favor surface adsorption, at least in the limit of low coverage, but are shown to be dependent on the nature of the SAM. The validity of these predictions is confirmed by comparison of the predicted sticking coefficients of DIP at a variety of incident energies on OTS, ODTS, and FOTS SAMs with results obtained experimentally by Desai et al. (2010) [23]. The simulation predictions of the tendency of DIP to insert can be explained, in large part, in terms of binding energies between SAM and DIP molecules. However, we note that entropic and stochastic events play a role in the deposition outcomes. Preliminary studies of multiple deposition events, emulating growth, show an unexpected diffusion of DIP molecules inserted within the SAM matrix in a clear attempt of the DIP molecules to aggregate together.  相似文献   
6.
7.
We study the hydrodynamic expansion of a rotating strongly interacting Fermi gas by releasing a cigar-shaped cloud with a known angular momentum from an optical trap. As the aspect ratio of the expanding cloud approaches unity, the angular velocity increases, indicating quenching of the moment of inertia I to as low as 0.05 of the rigid body value I(rig). Remarkably, we observe this behavior in both the superfluid and collisional normal fluid regimes, which obey nearly identical zero-viscosity irrotational hydrodynamics. We attribute irrotational flow in the normal fluid to a decay of the rotational part of the stream velocity during expansion, which occurs when the shear viscosity is negligible. Using conservation of angular momentum, we directly observe a fundamental result of irrotational hydrodynamics, I/I(rig) = delta2, where delta is the deformation parameter of the cloud.  相似文献   
8.
Dilute gas viscosity data may be inverted directly to give the intermolecular potential energy function if the well depth is known. The consequences of using different values of the well depth are studied, and it is concluded that the correct value may be distinguished by using second virial coefficient data.  相似文献   
9.
10.
Approximating the time to extinction of infection is an important problem in infection modelling. A variety of different approaches have been proposed in the literature. We study the performance of a number of such methods, and characterise their performance in terms of simplicity, accuracy, and generality. To this end, we consider first the classic stochastic susceptible-infected-susceptible (SIS) model, and then a multi-dimensional generalisation of this which allows for Erlang distributed infectious periods. We find that (i) for a below-threshold infection initiated by a small number of infected individuals, approximation via a linear branching process works well; (ii) for an above-threshold infection initiated at endemic equilibrium, methods from Hamiltonian statistical mechanics yield correct asymptotic behaviour as population size becomes large; (iii) the widely-used Ornstein-Uhlenbeck diffusion approximation gives a very poor approximation, but may retain some value for qualitative comparisons in certain cases; (iv) a more detailed diffusion approximation can give good numerical approximation in certain circumstances, but does not provide correct large population asymptotic behaviour, and cannot be relied upon without some form of external validation (eg simulation studies).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号