首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
化学   2篇
物理学   2篇
  2015年   2篇
  2014年   1篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Journal of Nanoparticle Research - Synthesis of yttrium oxide nanoparticles in a specially designed radio frequency thermal plasma reactor is reported. Good crystallinity, narrow size distribution,...  相似文献   
2.
An acid urethane oligodimethacrylate based on poly(ethylene glycol) was synthesized and used in the preparation of hybrid composites containing silsesquioxane sequences and titania domains formed through sol‐gel reactions along with silver/gold nanoparticles (Ag/Au NPs) in situ photogenerated during the UV‐curing process. The photopolymerization kinetics studied by Fourier transform infrared spectroscopy and photoDSC showed that the photoreactivity of the investigated formulations depends on the amount of titanium butoxide (5–20 wt %) added in the system subjected to UV irradiation. The introduction of 1 wt % AgNO3/AuBr3 in formulations slightly improved the degree of conversion but diminished the polymerization rates. The formation of hybrid materials comprising predominantly amorphous TiO2/SiO2 NPs, with or without Ag/Au NPs, was confirmed through specific analyses. The evaluation of photocatalytic activity demonstrated that the synthesized hybrid films are suitable for the complete removal of organic pollutants (phenolic compounds) from water under UV irradiation (200–350 min) at low intensity (found in the solar radiation). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1189–1204  相似文献   
3.
Urethane–urea dimethacrylates were synthesized and used in the preparation of nanocomposites containing gold nanoparticles (Au NPs) in situ photogenerated during the UV‐curing process in the absence of reducing agent. A study of the photopolymerization kinetics showed that the photoreactivity of the monomers alone or in combination with a dual urethane benzophenone (BP) macromer is dependent on the nature of photoinitiator (Irgacure819, BP/amine) and the formulation composition. It was found that the addition of 1 wt % AuBr3 in monomers slightly improved the polymerization rate and the degree of conversion. The formation of Au NPs into the network was confirmed through UV–vis, XRD, EDX, SAXS, and TEM analyses, the last indicating the existence of NPs with size around 8.5 nm and spherical/triangle shapes. On addition of 10 wt % 2[N‐methacryloyloxyethyl‐(N'‐2‐thioethyl)] (urea) in formulation, the Au NPs (200 nm) became predominantly cubic/hexagonal in shape. The composite films emit fluorescence at 575 nm, and this property could be exploited in the field of fluorescent bio/sensors. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 728–738  相似文献   
4.
Our study examined a series of hybrid composites containing copolyacrylate with semicarbazide-dansyl groups prepared by conventional radical polymerization of monomers in the organic montmorillonite modified with alkyl chains of variable length or using the sol-gel technique. The structure and the chemical composition of the copolymers Nmethacryloyloxyethylcarbamoyl-5-(dimethylaminonaphtalene-1-sulfonohydrazine)-co-methyl metahacrylate (DnsSA-co-MMA) and Nmethacryloyloxyethylcarbamoyl-5-(dimethylaminonaphtalene-1-sulfonohydrazine)-co-dodecylacrylamide (DnsSA-co-DA) as well as their nanocomposites (HC-P1, HC-P2, HC-P3, HC-P4) were confirmed by spectral analysis (1H NMR, FTIR, UV/vis), thermal methods and atomic force microscopy. To quantify the effect of the inorganic component compared to pure photopolymers we evaluated the properties of hybrid composites, including dielectric characterization. Additionally, these materials have been tested in experiments of fluorescence quenching by acids (HCl, p-toluenesulfonic acid, 1-S-camphorsulfonic acid), metallic cation (Cu2+) and nitrobenzene. The results suggest that such nanocomposites could find applications as fluorescence-based chemosensors in homogeneous organic solutions or thin films.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号