首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   7篇
化学   138篇
数学   1篇
物理学   15篇
  2024年   1篇
  2023年   2篇
  2021年   2篇
  2020年   4篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   6篇
  2011年   16篇
  2010年   8篇
  2009年   3篇
  2008年   9篇
  2007年   6篇
  2006年   7篇
  2005年   8篇
  2004年   8篇
  2003年   4篇
  2002年   9篇
  2001年   2篇
  2000年   6篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   5篇
  1984年   4篇
  1980年   1篇
  1979年   2篇
  1974年   1篇
排序方式: 共有154条查询结果,搜索用时 281 毫秒
1.
2.
The crystal structure of La3ReO8, prepared at 1425°C, is reported to be different from a previous result on a preparation at 900°C (BAUD et al., 1979). The high temperature modification crystallizes in the monoclinic space group P21/m with a = 7.757(1), b = 7.777(1), c = 5.928(1) Å, γ = 111.1°, Z = 2. The structure was solved by Patterson and Fourier methods from single crystal diffractometer data and refined to final R(F) = 0,073. The structure consists of isolated, distorted ReO6 octahedra and double chains of edge-shared La4O tetrahedra.  相似文献   
3.
The crystal structures of the high-temperature modifications of sodium and silver orthophosphates have been determined using powder neutron diffraction (PND) data. II-Na3PO4 adopts the space group Fm3m with at 400°C. The PO3−4 group is centered around the origin, but it shows high orientational disorder. The sodium ions occupy the and sites. II-Ag3PO4, at 650°C, is similar with . The structure of I-Ag3PO4 at room temperature
has been re-examined by single-crystal X-ray diffraction. The derived model, with R=0.019 for 116 independent reflections, is in agreement with the latest work reported in the literature. The structure of I-Ag3PO4 at 375°C, as determined by PND, has , and displays no gross modifications from that observed at 25°C, although the anisotropic nature of the silver sites is markedly more pronounced at this higher temperature. The cation mobility is discussed in relation to the high-temperatures structures.  相似文献   
4.
We have obtained three layered hybrid materials from the hydrothermal reaction of 4-cyclohexene-1,2-dicarboxylic acid with Co and Mn salts: Co(C(8)H(8)O(4))[1], Mn(H(2)O)(C(8)H(8)O(4))[2], and Mn(4)(H(2)O)(C(8)H(8)O(4))(4).0.3(H(2)O)[3]. The structures for all materials were solved by single-crystal XRD ([1]P1, a=4.805(2) A, b=6.650(3) A, c=12.960(6) A, alpha=98.285(7) degrees, beta=98.986(7) degrees, gamma=95.689(7) degrees, V= 401.6(3) A(3), R(1)= 0.0438; [2] P2(1)/c, a=11.151(2) A, b=11.330(2) A, c=7.6560(15) A, beta=108.813(3) degrees , V=915.6(3) A(3), R(1)=0.0412; [3] P1, a= 11.412(3) A, b=12.136(4) A, c=13.809(4) A, alpha=104.703(6) degrees, beta=103.207(6) degrees, gamma=92.468(5) degrees, V=1790.6(9) A(3), R(1)=0.1056). While all three structures are two-dimensional overall, the metal-oxygen-metal dimensionality within the layers varies from isolated metal atoms in the case of [1] to 1D ribbons of vertex sharing MnO(6) octahedra [2] and 2D arrays of edge- and vertex-sharing polyhedra in [3].  相似文献   
5.
6.
Hybrid organic–inorganic framework compounds constitute an important class of materials whose properties, especially paired ones, have not been adequately investigated hitherto. In this communication, we report the non-linear optical properties of hybrid compounds exhibiting interesting magnetic properties.  相似文献   
7.
This paper reports work on the development of an automatic control system for a Helicon plasma processing source. The lack of a definitive physical model for the plasma physics of the source and the power coupling mechanism to the plasma precludes the use of traditional control algorithms. This paper develops a fuzzy model that simulates the behavior of the plasma source using the process of genetic algorithms to identify and optimize the parameters of the fuzzy model. This type of model will eventually be used to test a fuzzy control system for the plasma source. In this work, an extensive set of experimental data was acquired where the magnetic field and input power to the plasma source were varied over a wide range while the electron number density was measured. From this learning dataset, the genetic algorithm derived the values of the parameters for the difference equation that describes the system. The fuzzy model so constructed was used to predict the behavior of the source from known input parameters. Comparing the predictions with experimental observations showed that the fuzzy model was generally able to predict the behavior of the plasma as its input parameters were varied with a precision of better than 10%  相似文献   
8.
Five different cobalt succinate materials synthesized from an identical starting mixture using temperature as the only independent variable show increasing condensation and density at higher synthesis temperatures.  相似文献   
9.
A hydrophilic interaction liquid chromatography (HILIC) method was used to separate a commonly used pharmaceutical starting material, 4-aminomethylpyridine (4-AMP), and its degradants. The structures of the major degradants were characterized and elucidated without prior isolation by accurate mass measurement, MS/MS analysis and on-line hydrogen/deuterium (H/D) exchange experiments. The mass spectra obtained from H/D exchange experiments are particularly useful to differentiate structural isomers, to elucidate the fragmentation pathways, and to aid in structure elucidation in the absence of MS/MS fragmentation information. The impact of deuterium oxide and temperature on HILIC separation has also been explored here. The integration of H/D exchange with HILIC has been described here for the first time and has been demonstrated to be a powerful structure elucidation tool via the study of degradants in 4-AMP.  相似文献   
10.
An anhydrous manganese succinate, Mn(C4H4O4), has been synthesised hydrothermally and studied by single‐crystal X‐ray diffraction. It adopts a succinate pillared structure in which layers of corner‐sharing MnO6 octahedra alternate with sheets that contain chains of edge‐sharing octahedra. This unique 3D framework structure contains highly distorted MnO6 octahedra, which are made possible by the lack of ligand field stabilisation energy for the high‐spin Mn2+ ion. Attempts to dope the structure with other divalent transition‐metal ions were accordingly unsuccessful. Magnetic susceptibility and heat capacity measurements indicate that Mn(C4H4O4) undergoes antiferromagnetic ordering below 12 K, with a second antiferromagnetic transition at approximately 6 K. These two antiferromagnetic phases undergo further transitions in applied fields, underlining the subtle magnetic behaviour that is possible in inorganic–organic frameworks of this structural complexity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号