首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   708篇
  免费   18篇
  国内免费   1篇
化学   326篇
晶体学   5篇
力学   20篇
数学   88篇
物理学   288篇
  2021年   7篇
  2020年   7篇
  2018年   12篇
  2017年   11篇
  2016年   10篇
  2015年   10篇
  2014年   5篇
  2013年   22篇
  2012年   41篇
  2011年   45篇
  2010年   12篇
  2009年   11篇
  2008年   32篇
  2007年   33篇
  2006年   34篇
  2005年   36篇
  2004年   17篇
  2003年   16篇
  2002年   10篇
  2001年   14篇
  2000年   20篇
  1999年   18篇
  1998年   11篇
  1997年   4篇
  1996年   7篇
  1995年   20篇
  1994年   27篇
  1993年   25篇
  1992年   11篇
  1991年   11篇
  1990年   20篇
  1989年   10篇
  1988年   9篇
  1987年   13篇
  1986年   10篇
  1985年   11篇
  1984年   6篇
  1983年   6篇
  1982年   8篇
  1981年   6篇
  1980年   4篇
  1978年   5篇
  1977年   5篇
  1975年   4篇
  1974年   5篇
  1972年   6篇
  1970年   3篇
  1938年   5篇
  1934年   5篇
  1868年   4篇
排序方式: 共有727条查询结果,搜索用时 0 毫秒
1.
The mechanism of lithium insertion that occurs in an iron oxyfluoride sample with a hexagonal–tungsten–bronze (HTB)-type structure was investigated by the pair distribution function. This study reveals that upon lithiation, the HTB framework collapses to yield disordered rutile and rock salt phases followed by a conversion reaction of the fluoride phase toward lithium fluoride and nanometer-sized metallic iron. The occurrence of anionic vacancies in the pristine framework was shown to strongly impact the electrochemical activity, that is, the reversible capacity scales with the content of anionic vacancies. Similar to FeOF-type electrodes, upon de-lithiation, a disordered rutile phase forms, showing that the anionic chemistry dictates the atomic arrangement of the re-oxidized phase. Finally, it was shown that the nanoscaling and structural rearrangement induced by the conversion reaction allow the in situ formation of new electrode materials with enhanced electrochemical properties.  相似文献   
2.
3.
4.
A rooted graph is a pair (G,x), where G is a simple undirected graph and xV(G). If G is rooted at x, its kth rotation number hk (G,x) is the minimum number of edges in a graph F of order |G| + k such that for every vV(F) we can find a copy of G in F with the root vertex x at v. When k = 0, this definition reduces to that of the rotation number h(G,x), which was introduced in [“On Rotation Numbers for Complete Bipartite Graphs,” University of Victoria, Department of Mathematics Report No. DM-186-IR (1979)] by E.J. Cockayne and P.J. Lorimer and subsequently calculated for complete multipartite graphs. In this paper, we estimate the kth rotation number for complete bipartite graphs G with root x in the larger vertex class, thereby generalizing results of B. Bollobás and E.J. Cockayne [“More Rotation Numbers for Complete Bipartite Graphs,” Journal of Graph Theory, Vol. 6 (1982), pp. 403–411], J. Haviland [“Cliques and Independent Sets,” Ph. D. thesis, University of Cambridge (1989)], and J. Haviland and A. Thomason [“Rotation Numbers for Complete Bipartite Graphs,” Journal of Graph Theory, Vol. 16 (1992), pp. 61–71]. © 1993 John Wiley & Sons, Inc.  相似文献   
5.
6.
7.
The ground-state masses of35Si and34Si have been measured using the reactions64Ni(36S,35,34Si)65,66Zn at a36S beam energy of 198 MeV.34,35Si14+ ions were analysed and identified in a QMG/2 magnetic spectrometer and gas-filled focal-plane detector. The experimental mass excess of35Si was determined to be ?14.58± 0.12 0.07 MeV while that of34Si was measured as ?19.961±0.034 MeV. A comparison is made with the results of mass model predictions.  相似文献   
8.
Herein we describe a strategy for the preparation of artificial alpha-helices involving replacement of one of the main-chain hydrogen bonds with a covalent linkage. To mimic the C=O...H-N hydrogen bond as closely as possible, we envisioned a covalent bond of the type C=X-Y-N, where X and Y are two carbon atoms connected through an olefin metathesis reaction. Our results demonstrate that the replacement of a hydrogen bond between the i and i + 4 residues at the N-terminus of a short peptide with a carbon-carbon bond results in a highly stable constrained alpha-helix at physiological conditions as indicated by CD and NMR spectroscopies. The advantage of this strategy is that it allows access to short alpha-helices with strict preservation of molecular recognition surfaces required for biomolecular interactions.  相似文献   
9.
Stalk lodging in maize results in significant yield losses. We have determined that cellulose per unit length of the stalk is the primary determinant of internodal strength. An increase in cellulose concentration in the wall might allow simultaneous improvements in stalk strength and harvest index. Cellulose formation in plants can be perturbed by mutations in the genes involved in cellulose synthesis, post-synthetic cellulose alteration or deposition, N-glycosylation, and some other genes with as yet unknown functions. We have isolated 12 members of the cellulose synthase (CesA) gene family from maize. The genes involved in primary wall formation appear to have duplicated relatively independently in dicots and monocots. The deduced amino acid sequences of three of the maize genes, ZmCesA10–12, cluster with the Arabidopsis CesA sequences that have been shown to be involved in secondary wall formation. Based on their expression patterns across multiple tissues, these three genes appear to be coordinately expressed. The remaining genes show overlapping expression to varying degrees with ZmCesA1, 7, and 8 forming one group, ZmCesA3 and 5 a second group, and ZmCesA2 and 6 exhibiting independent expression of any other gene. This suggests that the varying levels of coexpression may just be incidental except in the case of ZmCesA10–12, which may interact with each other to form a functional enzyme complex. Isolation of the expressed CesA genes from maize and their association with primary or secondary wall formation has made it possible to test their respective roles in cellulose synthesis through mutational genetics or transgenic approaches. This information would be useful in improving stalk strength.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号