首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
物理学   1篇
  2010年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
We propose and study numerically an all-normal-dispersion Ytterbium-doped figure-eight fiber laser scheme for generation of high-energy pulses. The monotonous pulse stretching that takes place in the fiber under the combined actions of normal dispersion and nonlinear Kerr effect is compensated by the amplitude modulation effect of a bandpass filter inserted in the ring section of the laser. The Nonlinear Optical Loop Mirror (NOLM) also contributes to shorten the pulses. An output coupler with a large output coupling ratio is inserted at the amplifier output in order to extract the maximal energy from the laser. A short segment of Ytterbium-doped fiber compensates for the losses. Stable single-pulse operation is predicted over a wide range of values of the laser parameters. If the laser parameters (ring and NOLM length, dispersion, filter bandwidth, output coupling ratio) are optimized, pulses with several tens of nanojoules energy are readily obtained, with picosecond duration and a large positive chirp which is linear near the peak. If small-signal gain is large enough, the use of very large output coupling ratios opens the way to pulse energies close to 100 nJ and, after dechirping outside the laser, to durations of ˜50 fs and peak powers of 1 MW.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号